Loading…
γ-Tocopherol inhibits human prostate cancer cell proliferation by up-regulation of transglutaminase 2 and down-regulation of cyclins
To establish a system to study differentiation therapy drugs, we used the androgen-independent human prostate PC-3 tumor cell line as a target and α- and γ-tocopherol as inducers. Effects of α- and γ-tocopherol on the cell cycle, proliferation and differentiation, were examined. A more significant g...
Saved in:
Published in: | Amino acids 2013, Vol.44 (1), p.45-51 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To establish a system to study differentiation therapy drugs, we used the androgen-independent human prostate PC-3 tumor cell line as a target and α- and γ-tocopherol as inducers. Effects of α- and γ-tocopherol on the cell cycle, proliferation and differentiation, were examined. A more significant growth inhibition activity for γ- than for α-tocopherol was observed. Flow cytometry analysis of α- and γ-tocopherol-treated prostate carcinoma PC3 cells showed decreased progression into the S-phase. This effect, particularly evident for γ-tocopherol, was associated with an up-regulation and increased activity of transglutaminase 2 (TG2), a reduced DNA synthesis and a remarkable decreased levels of cyclin D1 and cyclin E. Activation of TG2 suggests that γ-tocopherol has an evident differentiative capacity on PC3 cells, leading to an increased expression of TG2, and reduced cyclin D1 and cyclin E levels, affecting cell cycle progression. It is feasible that up-regulation and activation of TG2, associated with a reduced proliferation, are parts of a large-scale reprogramming that can attenuate the malignant phenotype of PC3 cells in vitro. These data suggest further investigation on the potential use of this γ-form of vitamin E as a differentiative agent, in combination with the common cytotoxic treatments for prostate cancer therapy. |
---|---|
ISSN: | 0939-4451 1438-2199 |
DOI: | 10.1007/s00726-012-1278-y |