Loading…
A long time span relativistic precession model of the Earth
A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic in- tegrator. Special Newtonian corrections accounting...
Saved in:
Published in: | Research in astronomy and astrophysics 2015-04, Vol.15 (4), p.583-596 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic in- tegrator. Special Newtonian corrections accounting for tidal dissipation are included in the force model. The part representing Earth's rotation is calculated in the Geocentric Celestial Reference System by integrating the post-Newtonian equations of motion published by Klioner et al. All the main relativistic effects are included following Klioner et al. In particular, we consider several relativistic reference systems with cor- responding time scales, scaled constants and parameters. Approximate expressions for Earth's precession in the interval ~1 Myr around J2000.0 are provided. In the interval 4-2000 years around J2000.0, the difference compared to the P03 precession theory is only several arcseconds and the results are consistent with other long-term precession theories. |
---|---|
ISSN: | 1674-4527 2397-6209 |
DOI: | 10.1088/1674-4527/15/4/010 |