Loading…

Assessing e-mail intent and tasks in e-mail messages

In this paper, we analyze corporate e-mail messages as a medium to convey work tasks. Research indicates that categorization of e-mail could alleviate the common problem of information overload. Although e-mail clients provide possibilities of e-mail categorization, not many users spend effort on pr...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2016-09, Vol.358-359, p.1-17
Main Authors: Sappelli, M., Pasi, G., Verberne, S., de Boer, M., Kraaij, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313
cites cdi_FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313
container_end_page 17
container_issue
container_start_page 1
container_title Information sciences
container_volume 358-359
creator Sappelli, M.
Pasi, G.
Verberne, S.
de Boer, M.
Kraaij, W.
description In this paper, we analyze corporate e-mail messages as a medium to convey work tasks. Research indicates that categorization of e-mail could alleviate the common problem of information overload. Although e-mail clients provide possibilities of e-mail categorization, not many users spend effort on proper e-mail management. Since e-mail clients are often used for task management, we argue that intent- and task-based categorizations might be what is missing from current systems. We propose a taxonomy of tasks that are expressed through e-mail messages. With this taxonomy, we manually annotated two e-mail datasets (Enron and Avocado), and evaluated the validity of the dimensions in the taxonomy. Furthermore, we investigated the potential for automatic e-mail classification in a machine learning experiment. We found that approximately half of the corporate e-mail messages contain at least one task, mostly informational or procedural in nature. We show that automatic detection of the number of tasks in an e-mail message is possible with 71% accuracy. One important finding is that it is possible to use the e-mails from one company to train a classifier to classify e-mails from another company. Detecting how many tasks a message contains, whether a reply is expected, or what the spatial and time sensitivity of such a task is, can help in providing a more detailed priority estimation of the message for the recipient. Such a priority-based categorization can support knowledge workers in their battle against e-mail overload.
doi_str_mv 10.1016/j.ins.2016.03.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816009018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516301438</els_id><sourcerecordid>1816009018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gysiSc49hxxVRVUJAqscBsOc6lckmc4kuR-Pe4KqxM7_TuvZPuY-yWQ8GBq_td4QMVZRoLEAVAecZmXNdlrsoFP2ez5EAOpZSX7IpoBwBVrdSMVUsiJPJhm2E-WN9nPkwYpsyGNpssfVAy_lZDStot0jW76GxPePOrc_b-9Pi2es43r-uX1XKTO1GLKVetwxorLiutodOykRpl7fTRaVXVlhqhUZVK0lVKKhRK1kJy2zWNQMHFnN2d7u7j-HlAmszgyWHf24DjgQzXXAEsgOsU5aeoiyNRxM7sox9s_DYczJGQ2ZlEyBwJGRAm8Uidh1MH0w9fHqMh5zE4bH1EN5l29P-0fwDZYWw7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816009018</pqid></control><display><type>article</type><title>Assessing e-mail intent and tasks in e-mail messages</title><source>ScienceDirect Journals</source><creator>Sappelli, M. ; Pasi, G. ; Verberne, S. ; de Boer, M. ; Kraaij, W.</creator><creatorcontrib>Sappelli, M. ; Pasi, G. ; Verberne, S. ; de Boer, M. ; Kraaij, W.</creatorcontrib><description>In this paper, we analyze corporate e-mail messages as a medium to convey work tasks. Research indicates that categorization of e-mail could alleviate the common problem of information overload. Although e-mail clients provide possibilities of e-mail categorization, not many users spend effort on proper e-mail management. Since e-mail clients are often used for task management, we argue that intent- and task-based categorizations might be what is missing from current systems. We propose a taxonomy of tasks that are expressed through e-mail messages. With this taxonomy, we manually annotated two e-mail datasets (Enron and Avocado), and evaluated the validity of the dimensions in the taxonomy. Furthermore, we investigated the potential for automatic e-mail classification in a machine learning experiment. We found that approximately half of the corporate e-mail messages contain at least one task, mostly informational or procedural in nature. We show that automatic detection of the number of tasks in an e-mail message is possible with 71% accuracy. One important finding is that it is possible to use the e-mails from one company to train a classifier to classify e-mails from another company. Detecting how many tasks a message contains, whether a reply is expected, or what the spatial and time sensitivity of such a task is, can help in providing a more detailed priority estimation of the message for the recipient. Such a priority-based categorization can support knowledge workers in their battle against e-mail overload.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.03.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Classification ; Clients ; E-mail annotation scheme ; E-mail intent ; Electronic mail ; Email ; Human annotation ; Management ; Messages ; Task-based e-mail categorization ; Tasks ; Taxonomy</subject><ispartof>Information sciences, 2016-09, Vol.358-359, p.1-17</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313</citedby><cites>FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313</cites><orcidid>0000-0002-6080-8170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sappelli, M.</creatorcontrib><creatorcontrib>Pasi, G.</creatorcontrib><creatorcontrib>Verberne, S.</creatorcontrib><creatorcontrib>de Boer, M.</creatorcontrib><creatorcontrib>Kraaij, W.</creatorcontrib><title>Assessing e-mail intent and tasks in e-mail messages</title><title>Information sciences</title><description>In this paper, we analyze corporate e-mail messages as a medium to convey work tasks. Research indicates that categorization of e-mail could alleviate the common problem of information overload. Although e-mail clients provide possibilities of e-mail categorization, not many users spend effort on proper e-mail management. Since e-mail clients are often used for task management, we argue that intent- and task-based categorizations might be what is missing from current systems. We propose a taxonomy of tasks that are expressed through e-mail messages. With this taxonomy, we manually annotated two e-mail datasets (Enron and Avocado), and evaluated the validity of the dimensions in the taxonomy. Furthermore, we investigated the potential for automatic e-mail classification in a machine learning experiment. We found that approximately half of the corporate e-mail messages contain at least one task, mostly informational or procedural in nature. We show that automatic detection of the number of tasks in an e-mail message is possible with 71% accuracy. One important finding is that it is possible to use the e-mails from one company to train a classifier to classify e-mails from another company. Detecting how many tasks a message contains, whether a reply is expected, or what the spatial and time sensitivity of such a task is, can help in providing a more detailed priority estimation of the message for the recipient. Such a priority-based categorization can support knowledge workers in their battle against e-mail overload.</description><subject>Classification</subject><subject>Clients</subject><subject>E-mail annotation scheme</subject><subject>E-mail intent</subject><subject>Electronic mail</subject><subject>Email</subject><subject>Human annotation</subject><subject>Management</subject><subject>Messages</subject><subject>Task-based e-mail categorization</subject><subject>Tasks</subject><subject>Taxonomy</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9gysiSc49hxxVRVUJAqscBsOc6lckmc4kuR-Pe4KqxM7_TuvZPuY-yWQ8GBq_td4QMVZRoLEAVAecZmXNdlrsoFP2ez5EAOpZSX7IpoBwBVrdSMVUsiJPJhm2E-WN9nPkwYpsyGNpssfVAy_lZDStot0jW76GxPePOrc_b-9Pi2es43r-uX1XKTO1GLKVetwxorLiutodOykRpl7fTRaVXVlhqhUZVK0lVKKhRK1kJy2zWNQMHFnN2d7u7j-HlAmszgyWHf24DjgQzXXAEsgOsU5aeoiyNRxM7sox9s_DYczJGQ2ZlEyBwJGRAm8Uidh1MH0w9fHqMh5zE4bH1EN5l29P-0fwDZYWw7</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Sappelli, M.</creator><creator>Pasi, G.</creator><creator>Verberne, S.</creator><creator>de Boer, M.</creator><creator>Kraaij, W.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6080-8170</orcidid></search><sort><creationdate>20160901</creationdate><title>Assessing e-mail intent and tasks in e-mail messages</title><author>Sappelli, M. ; Pasi, G. ; Verberne, S. ; de Boer, M. ; Kraaij, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classification</topic><topic>Clients</topic><topic>E-mail annotation scheme</topic><topic>E-mail intent</topic><topic>Electronic mail</topic><topic>Email</topic><topic>Human annotation</topic><topic>Management</topic><topic>Messages</topic><topic>Task-based e-mail categorization</topic><topic>Tasks</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sappelli, M.</creatorcontrib><creatorcontrib>Pasi, G.</creatorcontrib><creatorcontrib>Verberne, S.</creatorcontrib><creatorcontrib>de Boer, M.</creatorcontrib><creatorcontrib>Kraaij, W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sappelli, M.</au><au>Pasi, G.</au><au>Verberne, S.</au><au>de Boer, M.</au><au>Kraaij, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing e-mail intent and tasks in e-mail messages</atitle><jtitle>Information sciences</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>358-359</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In this paper, we analyze corporate e-mail messages as a medium to convey work tasks. Research indicates that categorization of e-mail could alleviate the common problem of information overload. Although e-mail clients provide possibilities of e-mail categorization, not many users spend effort on proper e-mail management. Since e-mail clients are often used for task management, we argue that intent- and task-based categorizations might be what is missing from current systems. We propose a taxonomy of tasks that are expressed through e-mail messages. With this taxonomy, we manually annotated two e-mail datasets (Enron and Avocado), and evaluated the validity of the dimensions in the taxonomy. Furthermore, we investigated the potential for automatic e-mail classification in a machine learning experiment. We found that approximately half of the corporate e-mail messages contain at least one task, mostly informational or procedural in nature. We show that automatic detection of the number of tasks in an e-mail message is possible with 71% accuracy. One important finding is that it is possible to use the e-mails from one company to train a classifier to classify e-mails from another company. Detecting how many tasks a message contains, whether a reply is expected, or what the spatial and time sensitivity of such a task is, can help in providing a more detailed priority estimation of the message for the recipient. Such a priority-based categorization can support knowledge workers in their battle against e-mail overload.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.03.002</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6080-8170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-09, Vol.358-359, p.1-17
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1816009018
source ScienceDirect Journals
subjects Classification
Clients
E-mail annotation scheme
E-mail intent
Electronic mail
Email
Human annotation
Management
Messages
Task-based e-mail categorization
Tasks
Taxonomy
title Assessing e-mail intent and tasks in e-mail messages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20e-mail%20intent%20and%20tasks%20in%20e-mail%20messages&rft.jtitle=Information%20sciences&rft.au=Sappelli,%20M.&rft.date=2016-09-01&rft.volume=358-359&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.03.002&rft_dat=%3Cproquest_cross%3E1816009018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-6dce7e4154880f85b58e57c84154d64d28e0b6468e0f4656e3657351afbb3e313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816009018&rft_id=info:pmid/&rfr_iscdi=true