Loading…
Self-regularized causal structure discovery for trajectory-based networks
•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control. Trajectory-based networks exhibit strong heterogeneous patterns amid human behavi...
Saved in:
Published in: | Journal of computer and system sciences 2016-06, Vol.82 (4), p.594-609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373 |
container_end_page | 609 |
container_issue | 4 |
container_start_page | 594 |
container_title | Journal of computer and system sciences |
container_volume | 82 |
creator | Chu, Victor W. Wong, Raymond K. Chen, Fang Fong, Simon Hung, Patrick C.K. |
description | •Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control.
Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset. |
doi_str_mv | 10.1016/j.jcss.2015.10.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816011576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000015001300</els_id><sourcerecordid>1816011576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcMqRS8LabuJW4oIqHpUqcQDOlmOvUUJal3VSVL4eR-XMXlYazYxmhrFrDgUHXt22RWtjLATwMgEFwOyETTgsIBdKzE7ZBECIHNKds4sYWwDOy0pO2OoVO58TfgydoeYHXWbNEE2XxZ4G2w-EmWuiDXukQ-YDZT2ZFm0f6JDXJib-FvvvQJ_xkp1500W8-vtT9v748LZ8ztcvT6vl_Tq3s5nqc4NQonLCSyONEXzOla1rBRU44YRcLPwYbC4TyueKmxJr5yvplC_rspRKTtnN0XdH4WvA2OtNCohdZ7YYhqiTYzW2U1WiiiPVUoiR0OsdNRtDB81Bj7vpVo-76XG3EUu7JdHdUYSpxL5B0tE2uLXoGkrFtQvNf_Jft6h3jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816011576</pqid></control><display><type>article</type><title>Self-regularized causal structure discovery for trajectory-based networks</title><source>ScienceDirect Freedom Collection</source><creator>Chu, Victor W. ; Wong, Raymond K. ; Chen, Fang ; Fong, Simon ; Hung, Patrick C.K.</creator><creatorcontrib>Chu, Victor W. ; Wong, Raymond K. ; Chen, Fang ; Fong, Simon ; Hung, Patrick C.K.</creatorcontrib><description>•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control.
Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2015.10.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive control systems ; Approximation ; Bayesian network ; Causal structure discovery ; Density-based clustering ; Dynamics ; Evolution ; Human behavior ; Mathematical models ; Networks ; Roads ; Time-varying ; Trajectories</subject><ispartof>Journal of computer and system sciences, 2016-06, Vol.82 (4), p.594-609</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</citedby><cites>FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chu, Victor W.</creatorcontrib><creatorcontrib>Wong, Raymond K.</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Fong, Simon</creatorcontrib><creatorcontrib>Hung, Patrick C.K.</creatorcontrib><title>Self-regularized causal structure discovery for trajectory-based networks</title><title>Journal of computer and system sciences</title><description>•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control.
Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.</description><subject>Adaptive control systems</subject><subject>Approximation</subject><subject>Bayesian network</subject><subject>Causal structure discovery</subject><subject>Density-based clustering</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Human behavior</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Roads</subject><subject>Time-varying</subject><subject>Trajectories</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcMqRS8LabuJW4oIqHpUqcQDOlmOvUUJal3VSVL4eR-XMXlYazYxmhrFrDgUHXt22RWtjLATwMgEFwOyETTgsIBdKzE7ZBECIHNKds4sYWwDOy0pO2OoVO58TfgydoeYHXWbNEE2XxZ4G2w-EmWuiDXukQ-YDZT2ZFm0f6JDXJib-FvvvQJ_xkp1500W8-vtT9v748LZ8ztcvT6vl_Tq3s5nqc4NQonLCSyONEXzOla1rBRU44YRcLPwYbC4TyueKmxJr5yvplC_rspRKTtnN0XdH4WvA2OtNCohdZ7YYhqiTYzW2U1WiiiPVUoiR0OsdNRtDB81Bj7vpVo-76XG3EUu7JdHdUYSpxL5B0tE2uLXoGkrFtQvNf_Jft6h3jQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Chu, Victor W.</creator><creator>Wong, Raymond K.</creator><creator>Chen, Fang</creator><creator>Fong, Simon</creator><creator>Hung, Patrick C.K.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160601</creationdate><title>Self-regularized causal structure discovery for trajectory-based networks</title><author>Chu, Victor W. ; Wong, Raymond K. ; Chen, Fang ; Fong, Simon ; Hung, Patrick C.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive control systems</topic><topic>Approximation</topic><topic>Bayesian network</topic><topic>Causal structure discovery</topic><topic>Density-based clustering</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Human behavior</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Roads</topic><topic>Time-varying</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Victor W.</creatorcontrib><creatorcontrib>Wong, Raymond K.</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Fong, Simon</creatorcontrib><creatorcontrib>Hung, Patrick C.K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Victor W.</au><au>Wong, Raymond K.</au><au>Chen, Fang</au><au>Fong, Simon</au><au>Hung, Patrick C.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-regularized causal structure discovery for trajectory-based networks</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>82</volume><issue>4</issue><spage>594</spage><epage>609</epage><pages>594-609</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control.
Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2015.10.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0000 |
ispartof | Journal of computer and system sciences, 2016-06, Vol.82 (4), p.594-609 |
issn | 0022-0000 1090-2724 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816011576 |
source | ScienceDirect Freedom Collection |
subjects | Adaptive control systems Approximation Bayesian network Causal structure discovery Density-based clustering Dynamics Evolution Human behavior Mathematical models Networks Roads Time-varying Trajectories |
title | Self-regularized causal structure discovery for trajectory-based networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-regularized%20causal%20structure%20discovery%20for%20trajectory-based%20networks&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Chu,%20Victor%20W.&rft.date=2016-06-01&rft.volume=82&rft.issue=4&rft.spage=594&rft.epage=609&rft.pages=594-609&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2015.10.004&rft_dat=%3Cproquest_cross%3E1816011576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816011576&rft_id=info:pmid/&rfr_iscdi=true |