Loading…

Self-regularized causal structure discovery for trajectory-based networks

•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control. Trajectory-based networks exhibit strong heterogeneous patterns amid human behavi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer and system sciences 2016-06, Vol.82 (4), p.594-609
Main Authors: Chu, Victor W., Wong, Raymond K., Chen, Fang, Fong, Simon, Hung, Patrick C.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373
cites cdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373
container_end_page 609
container_issue 4
container_start_page 594
container_title Journal of computer and system sciences
container_volume 82
creator Chu, Victor W.
Wong, Raymond K.
Chen, Fang
Fong, Simon
Hung, Patrick C.K.
description •Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control. Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.
doi_str_mv 10.1016/j.jcss.2015.10.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816011576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000015001300</els_id><sourcerecordid>1816011576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcMqRS8LabuJW4oIqHpUqcQDOlmOvUUJal3VSVL4eR-XMXlYazYxmhrFrDgUHXt22RWtjLATwMgEFwOyETTgsIBdKzE7ZBECIHNKds4sYWwDOy0pO2OoVO58TfgydoeYHXWbNEE2XxZ4G2w-EmWuiDXukQ-YDZT2ZFm0f6JDXJib-FvvvQJ_xkp1500W8-vtT9v748LZ8ztcvT6vl_Tq3s5nqc4NQonLCSyONEXzOla1rBRU44YRcLPwYbC4TyueKmxJr5yvplC_rspRKTtnN0XdH4WvA2OtNCohdZ7YYhqiTYzW2U1WiiiPVUoiR0OsdNRtDB81Bj7vpVo-76XG3EUu7JdHdUYSpxL5B0tE2uLXoGkrFtQvNf_Jft6h3jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816011576</pqid></control><display><type>article</type><title>Self-regularized causal structure discovery for trajectory-based networks</title><source>ScienceDirect Freedom Collection</source><creator>Chu, Victor W. ; Wong, Raymond K. ; Chen, Fang ; Fong, Simon ; Hung, Patrick C.K.</creator><creatorcontrib>Chu, Victor W. ; Wong, Raymond K. ; Chen, Fang ; Fong, Simon ; Hung, Patrick C.K.</creatorcontrib><description>•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control. Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2015.10.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive control systems ; Approximation ; Bayesian network ; Causal structure discovery ; Density-based clustering ; Dynamics ; Evolution ; Human behavior ; Mathematical models ; Networks ; Roads ; Time-varying ; Trajectories</subject><ispartof>Journal of computer and system sciences, 2016-06, Vol.82 (4), p.594-609</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</citedby><cites>FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chu, Victor W.</creatorcontrib><creatorcontrib>Wong, Raymond K.</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Fong, Simon</creatorcontrib><creatorcontrib>Hung, Patrick C.K.</creatorcontrib><title>Self-regularized causal structure discovery for trajectory-based networks</title><title>Journal of computer and system sciences</title><description>•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control. Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.</description><subject>Adaptive control systems</subject><subject>Approximation</subject><subject>Bayesian network</subject><subject>Causal structure discovery</subject><subject>Density-based clustering</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Human behavior</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Roads</subject><subject>Time-varying</subject><subject>Trajectories</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcMqRS8LabuJW4oIqHpUqcQDOlmOvUUJal3VSVL4eR-XMXlYazYxmhrFrDgUHXt22RWtjLATwMgEFwOyETTgsIBdKzE7ZBECIHNKds4sYWwDOy0pO2OoVO58TfgydoeYHXWbNEE2XxZ4G2w-EmWuiDXukQ-YDZT2ZFm0f6JDXJib-FvvvQJ_xkp1500W8-vtT9v748LZ8ztcvT6vl_Tq3s5nqc4NQonLCSyONEXzOla1rBRU44YRcLPwYbC4TyueKmxJr5yvplC_rspRKTtnN0XdH4WvA2OtNCohdZ7YYhqiTYzW2U1WiiiPVUoiR0OsdNRtDB81Bj7vpVo-76XG3EUu7JdHdUYSpxL5B0tE2uLXoGkrFtQvNf_Jft6h3jQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Chu, Victor W.</creator><creator>Wong, Raymond K.</creator><creator>Chen, Fang</creator><creator>Fong, Simon</creator><creator>Hung, Patrick C.K.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160601</creationdate><title>Self-regularized causal structure discovery for trajectory-based networks</title><author>Chu, Victor W. ; Wong, Raymond K. ; Chen, Fang ; Fong, Simon ; Hung, Patrick C.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive control systems</topic><topic>Approximation</topic><topic>Bayesian network</topic><topic>Causal structure discovery</topic><topic>Density-based clustering</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Human behavior</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Roads</topic><topic>Time-varying</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Victor W.</creatorcontrib><creatorcontrib>Wong, Raymond K.</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Fong, Simon</creatorcontrib><creatorcontrib>Hung, Patrick C.K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Victor W.</au><au>Wong, Raymond K.</au><au>Chen, Fang</au><au>Fong, Simon</au><au>Hung, Patrick C.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-regularized causal structure discovery for trajectory-based networks</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>82</volume><issue>4</issue><spage>594</spage><epage>609</epage><pages>594-609</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>•Existing models rarely consider trajectories' time-varying properties.•cTVDBN reveals causal relationships among regions.•More reliable inferences can be made.•Approximate homotopy automates over-fitting control. Trajectory-based networks exhibit strong heterogeneous patterns amid human behaviors. We propose a notion of causal time-varying dynamic Bayesian network (cTVDBN) to efficiently discover such patterns. While asymmetric kernels are used to make the model better adherence to causal principles, the variations of network connectivities are addressed by an adaptive over-fitting control. Compact regularization paths are obtained by approximate homotopy to make the solution tractable. In our experiments, cTVDBN structure discovery has successfully revealed the evolution of time-varying relationships in a ring road system, and provided insights for plausible road structure improvements from a traffic flow dataset.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2015.10.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2016-06, Vol.82 (4), p.594-609
issn 0022-0000
1090-2724
language eng
recordid cdi_proquest_miscellaneous_1816011576
source ScienceDirect Freedom Collection
subjects Adaptive control systems
Approximation
Bayesian network
Causal structure discovery
Density-based clustering
Dynamics
Evolution
Human behavior
Mathematical models
Networks
Roads
Time-varying
Trajectories
title Self-regularized causal structure discovery for trajectory-based networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-regularized%20causal%20structure%20discovery%20for%20trajectory-based%20networks&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Chu,%20Victor%20W.&rft.date=2016-06-01&rft.volume=82&rft.issue=4&rft.spage=594&rft.epage=609&rft.pages=594-609&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2015.10.004&rft_dat=%3Cproquest_cross%3E1816011576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-ae05e7d2f3a3aa21817cbb7060d2d2399f1563837cb1871a5ebdf63d7f5b55373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816011576&rft_id=info:pmid/&rfr_iscdi=true