Loading…
Adslot Mining for Online Display Ads
Finding appropriate adslots to display ads is an important step to achieve high conversion rates in online display advertising. Previous work on ad recommendation and conversion prediction often focuses on matching between adslots, users and ads simultaneously for each impression at micro level. Suc...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 364 |
container_issue | |
container_start_page | 355 |
container_title | |
container_volume | |
creator | Taniguchi, Kazuki Harada, Yuki Nguyen Tuan Duc |
description | Finding appropriate adslots to display ads is an important step to achieve high conversion rates in online display advertising. Previous work on ad recommendation and conversion prediction often focuses on matching between adslots, users and ads simultaneously for each impression at micro level. Such methods require rich attributes of users, ads and adslots, which might not always be available, especially with ad-adslot pairs that have never been displayed. In this research, we propose a macro approach for mining new adslots for each ad by recommending appropriate adslots to the ad. The proposed method does not require any user information and can be pre-calculated offline, even when there are not any impressions of the ad on the target adslots. It applies matrix factorization techniques to the ad-adslot performance history matrix to calculate the predicted performance of the target adslots. Experiments show that the proposed method achieves a small root mean-square error (RMSE) when testing with offline data and it yields high conversion rates in online tests with real-world ad campaigns. |
doi_str_mv | 10.1109/ICDMW.2015.82 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816022850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7395692</ieee_id><sourcerecordid>1816022850</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-47d0e623a77f52a26a9653d80b86f066fea9ae0948072c785550f371ca821a573</originalsourceid><addsrcrecordid>eNotjjtPwzAURg0SEiV0ZGLJwMCScH2d68dYpTwqteoCYozcxEGW3CTE6dB_T6QynW84-nQYe-CQcw7mZVOud985Aqdc4xW744VUQhcG6ZotUCjK5mlu2TJGfwAkEMaQWLCnVRNDP6U73_nuJ237Md13wXcuXfs4BHtOZ-Ge3bQ2RLf8Z8K-3l4_y49su3_flKtt5hH0lBWqASdRWKVaQovSGkmi0XDQsgUpW2eNdWAKDQprpYkIWqF4bTVyS0ok7PnyO4z978nFqTr6WLsQbOf6U6y45hIQ9VyfsMeL6p1z1TD6ox3PlRKGpEHxB1afSq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1816022850</pqid></control><display><type>conference_proceeding</type><title>Adslot Mining for Online Display Ads</title><source>IEEE Xplore All Conference Series</source><creator>Taniguchi, Kazuki ; Harada, Yuki ; Nguyen Tuan Duc</creator><creatorcontrib>Taniguchi, Kazuki ; Harada, Yuki ; Nguyen Tuan Duc</creatorcontrib><description>Finding appropriate adslots to display ads is an important step to achieve high conversion rates in online display advertising. Previous work on ad recommendation and conversion prediction often focuses on matching between adslots, users and ads simultaneously for each impression at micro level. Such methods require rich attributes of users, ads and adslots, which might not always be available, especially with ad-adslot pairs that have never been displayed. In this research, we propose a macro approach for mining new adslots for each ad by recommending appropriate adslots to the ad. The proposed method does not require any user information and can be pre-calculated offline, even when there are not any impressions of the ad on the target adslots. It applies matrix factorization techniques to the ad-adslot performance history matrix to calculate the predicted performance of the target adslots. Experiments show that the proposed method achieves a small root mean-square error (RMSE) when testing with offline data and it yields high conversion rates in online tests with real-world ad campaigns.</description><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 1467384925</identifier><identifier>EISBN: 9781467384926</identifier><identifier>EISBN: 9781467384933</identifier><identifier>EISBN: 1467384933</identifier><identifier>DOI: 10.1109/ICDMW.2015.82</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>ad-adslot matching ; adslot mining ; Advertising ; Collaboration ; collaborative filtering ; Conferences ; Context ; Conversion ; conversion rate ; Data mining ; Data models ; Factorization ; Mathematical analysis ; matrix factorization ; Mining ; Online ; Prediction algorithms ; User requirements</subject><ispartof>2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, p.355-364</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7395692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7395692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taniguchi, Kazuki</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Nguyen Tuan Duc</creatorcontrib><title>Adslot Mining for Online Display Ads</title><title>2015 IEEE International Conference on Data Mining Workshop (ICDMW)</title><addtitle>ICDMW</addtitle><description>Finding appropriate adslots to display ads is an important step to achieve high conversion rates in online display advertising. Previous work on ad recommendation and conversion prediction often focuses on matching between adslots, users and ads simultaneously for each impression at micro level. Such methods require rich attributes of users, ads and adslots, which might not always be available, especially with ad-adslot pairs that have never been displayed. In this research, we propose a macro approach for mining new adslots for each ad by recommending appropriate adslots to the ad. The proposed method does not require any user information and can be pre-calculated offline, even when there are not any impressions of the ad on the target adslots. It applies matrix factorization techniques to the ad-adslot performance history matrix to calculate the predicted performance of the target adslots. Experiments show that the proposed method achieves a small root mean-square error (RMSE) when testing with offline data and it yields high conversion rates in online tests with real-world ad campaigns.</description><subject>ad-adslot matching</subject><subject>adslot mining</subject><subject>Advertising</subject><subject>Collaboration</subject><subject>collaborative filtering</subject><subject>Conferences</subject><subject>Context</subject><subject>Conversion</subject><subject>conversion rate</subject><subject>Data mining</subject><subject>Data models</subject><subject>Factorization</subject><subject>Mathematical analysis</subject><subject>matrix factorization</subject><subject>Mining</subject><subject>Online</subject><subject>Prediction algorithms</subject><subject>User requirements</subject><issn>2375-9259</issn><isbn>1467384925</isbn><isbn>9781467384926</isbn><isbn>9781467384933</isbn><isbn>1467384933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjjtPwzAURg0SEiV0ZGLJwMCScH2d68dYpTwqteoCYozcxEGW3CTE6dB_T6QynW84-nQYe-CQcw7mZVOud985Aqdc4xW744VUQhcG6ZotUCjK5mlu2TJGfwAkEMaQWLCnVRNDP6U73_nuJ237Md13wXcuXfs4BHtOZ-Ge3bQ2RLf8Z8K-3l4_y49su3_flKtt5hH0lBWqASdRWKVaQovSGkmi0XDQsgUpW2eNdWAKDQprpYkIWqF4bTVyS0ok7PnyO4z978nFqTr6WLsQbOf6U6y45hIQ9VyfsMeL6p1z1TD6ox3PlRKGpEHxB1afSq8</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Taniguchi, Kazuki</creator><creator>Harada, Yuki</creator><creator>Nguyen Tuan Duc</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>Adslot Mining for Online Display Ads</title><author>Taniguchi, Kazuki ; Harada, Yuki ; Nguyen Tuan Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-47d0e623a77f52a26a9653d80b86f066fea9ae0948072c785550f371ca821a573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ad-adslot matching</topic><topic>adslot mining</topic><topic>Advertising</topic><topic>Collaboration</topic><topic>collaborative filtering</topic><topic>Conferences</topic><topic>Context</topic><topic>Conversion</topic><topic>conversion rate</topic><topic>Data mining</topic><topic>Data models</topic><topic>Factorization</topic><topic>Mathematical analysis</topic><topic>matrix factorization</topic><topic>Mining</topic><topic>Online</topic><topic>Prediction algorithms</topic><topic>User requirements</topic><toplevel>online_resources</toplevel><creatorcontrib>Taniguchi, Kazuki</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Nguyen Tuan Duc</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taniguchi, Kazuki</au><au>Harada, Yuki</au><au>Nguyen Tuan Duc</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adslot Mining for Online Display Ads</atitle><btitle>2015 IEEE International Conference on Data Mining Workshop (ICDMW)</btitle><stitle>ICDMW</stitle><date>2015-11-01</date><risdate>2015</risdate><spage>355</spage><epage>364</epage><pages>355-364</pages><eissn>2375-9259</eissn><eisbn>1467384925</eisbn><eisbn>9781467384926</eisbn><eisbn>9781467384933</eisbn><eisbn>1467384933</eisbn><coden>IEEPAD</coden><abstract>Finding appropriate adslots to display ads is an important step to achieve high conversion rates in online display advertising. Previous work on ad recommendation and conversion prediction often focuses on matching between adslots, users and ads simultaneously for each impression at micro level. Such methods require rich attributes of users, ads and adslots, which might not always be available, especially with ad-adslot pairs that have never been displayed. In this research, we propose a macro approach for mining new adslots for each ad by recommending appropriate adslots to the ad. The proposed method does not require any user information and can be pre-calculated offline, even when there are not any impressions of the ad on the target adslots. It applies matrix factorization techniques to the ad-adslot performance history matrix to calculate the predicted performance of the target adslots. Experiments show that the proposed method achieves a small root mean-square error (RMSE) when testing with offline data and it yields high conversion rates in online tests with real-world ad campaigns.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2015.82</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-9259 |
ispartof | 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, p.355-364 |
issn | 2375-9259 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816022850 |
source | IEEE Xplore All Conference Series |
subjects | ad-adslot matching adslot mining Advertising Collaboration collaborative filtering Conferences Context Conversion conversion rate Data mining Data models Factorization Mathematical analysis matrix factorization Mining Online Prediction algorithms User requirements |
title | Adslot Mining for Online Display Ads |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adslot%20Mining%20for%20Online%20Display%20Ads&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshop%20(ICDMW)&rft.au=Taniguchi,%20Kazuki&rft.date=2015-11-01&rft.spage=355&rft.epage=364&rft.pages=355-364&rft.eissn=2375-9259&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDMW.2015.82&rft.eisbn=1467384925&rft.eisbn_list=9781467384926&rft.eisbn_list=9781467384933&rft.eisbn_list=1467384933&rft_dat=%3Cproquest_CHZPO%3E1816022850%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-47d0e623a77f52a26a9653d80b86f066fea9ae0948072c785550f371ca821a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816022850&rft_id=info:pmid/&rft_ieee_id=7395692&rfr_iscdi=true |