Loading…

Simulation optimization: a review of algorithms and applications

Simulation optimization (SO) refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2016-05, Vol.240 (1), p.351-380
Main Authors: Amaran, Satyajith, Sahinidis, Nikolaos V., Sharda, Bikram, Bury, Scott J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263
cites cdi_FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263
container_end_page 380
container_issue 1
container_start_page 351
container_title Annals of operations research
container_volume 240
creator Amaran, Satyajith
Sahinidis, Nikolaos V.
Sharda, Bikram
Bury, Scott J.
description Simulation optimization (SO) refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs, homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can imagine, there exist several competing algorithms for each of these classes of problems. This document emphasizes the difficulties in SO as compared to algebraic model-based mathematical programming, makes reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used, reviews some of the diverse applications that have been tackled by these methods, and speculates on future directions in the field.
doi_str_mv 10.1007/s10479-015-2019-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816025983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A456368097</galeid><sourcerecordid>A456368097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpoNtNf0Bvhl5yqBPJsmQpp4bQfEAgh7RnoZVHjoJtuRq7TfPro80WmpQUgYSk5xlmeAn5yOgho7Q5QkbrRpeUibKiTJf3b8iKiaYqNefqLVnRStSl4Jy-I-8R7yiljCmxIl9uwrD0dg5xLOI0hyE8PF2OC1sk-BngVxF9YfsupjDfDljYsS3sNPXBPXG4T_a87RE-_DnX5PvZ12-nF-XV9fnl6clV6Wot57JuvaurplUb56X2tBGMamg9WFVZ71pmhWh1w8FyIZj0jm5AOGtlCxXnleRrcrCrO6X4YwGczRDQQd_bEeKChikm85Ba8Yx--ge9i0sac3eGNUpJ3Sgh_1Kd7cGE0cc5Wbctak7q_C8Vzf2syeErVF4tDMHFEXzI7y-Ez8-EzYJhBMwbhu52xs4uiC9xtsNdiogJvJlSGGz6bRg122TNLlmTkzXbZM19dqqdg5kdO0jP5vuv9AjML6Vi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788697856</pqid></control><display><type>article</type><title>Simulation optimization: a review of algorithms and applications</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Amaran, Satyajith ; Sahinidis, Nikolaos V. ; Sharda, Bikram ; Bury, Scott J.</creator><creatorcontrib>Amaran, Satyajith ; Sahinidis, Nikolaos V. ; Sharda, Bikram ; Bury, Scott J.</creatorcontrib><description>Simulation optimization (SO) refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs, homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can imagine, there exist several competing algorithms for each of these classes of problems. This document emphasizes the difficulties in SO as compared to algebraic model-based mathematical programming, makes reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used, reviews some of the diverse applications that have been tackled by these methods, and speculates on future directions in the field.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-015-2019-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Business and Management ; Combinatorics ; Computer simulation ; Decision-making ; Engineering ; Expected values ; Management research ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Mathematical optimization ; Mathematical programming ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; R&amp;D ; Random variables ; Research &amp; development ; SI: 4OR Surveys ; Simulation ; Simulation methods ; Software ; State of the art ; Studies ; Theory of Computation</subject><ispartof>Annals of operations research, 2016-05, Vol.240 (1), p.351-380</ispartof><rights>The Author(s) 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263</citedby><cites>FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1788697856/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1788697856?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Amaran, Satyajith</creatorcontrib><creatorcontrib>Sahinidis, Nikolaos V.</creatorcontrib><creatorcontrib>Sharda, Bikram</creatorcontrib><creatorcontrib>Bury, Scott J.</creatorcontrib><title>Simulation optimization: a review of algorithms and applications</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Simulation optimization (SO) refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs, homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can imagine, there exist several competing algorithms for each of these classes of problems. This document emphasizes the difficulties in SO as compared to algebraic model-based mathematical programming, makes reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used, reviews some of the diverse applications that have been tackled by these methods, and speculates on future directions in the field.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Computer simulation</subject><subject>Decision-making</subject><subject>Engineering</subject><subject>Expected values</subject><subject>Management research</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>R&amp;D</subject><subject>Random variables</subject><subject>Research &amp; development</subject><subject>SI: 4OR Surveys</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Software</subject><subject>State of the art</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1r3DAQhkVpoNtNf0Bvhl5yqBPJsmQpp4bQfEAgh7RnoZVHjoJtuRq7TfPro80WmpQUgYSk5xlmeAn5yOgho7Q5QkbrRpeUibKiTJf3b8iKiaYqNefqLVnRStSl4Jy-I-8R7yiljCmxIl9uwrD0dg5xLOI0hyE8PF2OC1sk-BngVxF9YfsupjDfDljYsS3sNPXBPXG4T_a87RE-_DnX5PvZ12-nF-XV9fnl6clV6Wot57JuvaurplUb56X2tBGMamg9WFVZ71pmhWh1w8FyIZj0jm5AOGtlCxXnleRrcrCrO6X4YwGczRDQQd_bEeKChikm85Ba8Yx--ge9i0sac3eGNUpJ3Sgh_1Kd7cGE0cc5Wbctak7q_C8Vzf2syeErVF4tDMHFEXzI7y-Ez8-EzYJhBMwbhu52xs4uiC9xtsNdiogJvJlSGGz6bRg122TNLlmTkzXbZM19dqqdg5kdO0jP5vuv9AjML6Vi</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Amaran, Satyajith</creator><creator>Sahinidis, Nikolaos V.</creator><creator>Sharda, Bikram</creator><creator>Bury, Scott J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>Simulation optimization: a review of algorithms and applications</title><author>Amaran, Satyajith ; Sahinidis, Nikolaos V. ; Sharda, Bikram ; Bury, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Computer simulation</topic><topic>Decision-making</topic><topic>Engineering</topic><topic>Expected values</topic><topic>Management research</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>R&amp;D</topic><topic>Random variables</topic><topic>Research &amp; development</topic><topic>SI: 4OR Surveys</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Software</topic><topic>State of the art</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaran, Satyajith</creatorcontrib><creatorcontrib>Sahinidis, Nikolaos V.</creatorcontrib><creatorcontrib>Sharda, Bikram</creatorcontrib><creatorcontrib>Bury, Scott J.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaran, Satyajith</au><au>Sahinidis, Nikolaos V.</au><au>Sharda, Bikram</au><au>Bury, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation optimization: a review of algorithms and applications</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>240</volume><issue>1</issue><spage>351</spage><epage>380</epage><pages>351-380</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Simulation optimization (SO) refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs, homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can imagine, there exist several competing algorithms for each of these classes of problems. This document emphasizes the difficulties in SO as compared to algebraic model-based mathematical programming, makes reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used, reviews some of the diverse applications that have been tackled by these methods, and speculates on future directions in the field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-015-2019-x</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2016-05, Vol.240 (1), p.351-380
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_miscellaneous_1816025983
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global; Springer Nature
subjects Algebra
Algorithms
Business and Management
Combinatorics
Computer simulation
Decision-making
Engineering
Expected values
Management research
Mathematical analysis
Mathematical functions
Mathematical models
Mathematical optimization
Mathematical programming
Methods
Operations research
Operations Research/Decision Theory
Optimization
R&D
Random variables
Research & development
SI: 4OR Surveys
Simulation
Simulation methods
Software
State of the art
Studies
Theory of Computation
title Simulation optimization: a review of algorithms and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20optimization:%20a%20review%20of%20algorithms%20and%20applications&rft.jtitle=Annals%20of%20operations%20research&rft.au=Amaran,%20Satyajith&rft.date=2016-05-01&rft.volume=240&rft.issue=1&rft.spage=351&rft.epage=380&rft.pages=351-380&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-015-2019-x&rft_dat=%3Cgale_proqu%3EA456368097%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-4dfc427d8bcf69f075109edfea82afcd1a55d973ea35516fc0be5caa6de233263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788697856&rft_id=info:pmid/&rft_galeid=A456368097&rfr_iscdi=true