Loading…

Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis

Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relax...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance (1997) 2016-06, Vol.267, p.9-14
Main Authors: Palamara, Joseph, Seidel, Karsten, Moini, Ahmad, Prasad, Subramanian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.
ISSN:1090-7807
1096-0856
DOI:10.1016/j.jmr.2016.03.009