Loading…

IMAGE PROCESSING USING ARTIFICIAL NEURAL NETWORKS

Image processing using artificial neuronal networks (ANN) has been successfully used in various fields of activity such as geotechnics, civil engineering, mechanics, industrial surveillance, defence department, automatics and transport. Image preprocessing, date reduction, segmentation and recogniti...

Full description

Saved in:
Bibliographic Details
Published in:Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura Construcții, arhitectura, 2015-07, Vol.61 (4), p.9-9
Main Authors: Pandelea, Alexandrina-Elena, Budescu, Mihai, Covatariu, Gabriela
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9
container_issue 4
container_start_page 9
container_title Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura
container_volume 61
creator Pandelea, Alexandrina-Elena
Budescu, Mihai
Covatariu, Gabriela
description Image processing using artificial neuronal networks (ANN) has been successfully used in various fields of activity such as geotechnics, civil engineering, mechanics, industrial surveillance, defence department, automatics and transport. Image preprocessing, date reduction, segmentation and recognition are the processes used in managing images with ANN. An image can be represented as a matrix, each element of the matrix containing colour information for a pixel. The matrix is used as input data into the neuronal network. The small dimensions of the images, to easily and quickly help learning, establish the size of the vector and the number of input vectors. The transfer function used is a sigmoidal function. The learning rate includes values between [0,1] and the error it is recommended to be below 0.1.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816027791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816027791</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-140ed3b65aa5662646642072e3400ab36b506cad0e1471bb84e66e6fba5aa9473</originalsourceid><addsrcrecordid>eNpdjk1Lw0AURQexYKz-h4AbN4F58_FmsgwhjYOxkSSlyzDTTsESm9ox_99QXbm5Z3Pu5d6QiFHUiVDIbkkEjImEay3uyH0IR0oxlQgRAfOWlUX83tR50bZmXcaba2ZNZ1YmN1kVr4tNc0W3rZvX9oEsDnYI_vGPS9Ktii5_Saq6NHlWJWcESEBQv-cOpbUSkaFAFIwq5rmg1DqOTlLc2T31IBQ4p4VH9Hhwdm6kQvElef6dPV_Gr8mH7_7zI-z8MNiTH6fQgwakTKkUZvXpn3ocp8tpPteD0lJJ5LP1A6aZSJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785756391</pqid></control><display><type>article</type><title>IMAGE PROCESSING USING ARTIFICIAL NEURAL NETWORKS</title><source>Publicly Available Content Database</source><creator>Pandelea, Alexandrina-Elena ; Budescu, Mihai ; Covatariu, Gabriela</creator><creatorcontrib>Pandelea, Alexandrina-Elena ; Budescu, Mihai ; Covatariu, Gabriela</creatorcontrib><description>Image processing using artificial neuronal networks (ANN) has been successfully used in various fields of activity such as geotechnics, civil engineering, mechanics, industrial surveillance, defence department, automatics and transport. Image preprocessing, date reduction, segmentation and recognition are the processes used in managing images with ANN. An image can be represented as a matrix, each element of the matrix containing colour information for a pixel. The matrix is used as input data into the neuronal network. The small dimensions of the images, to easily and quickly help learning, establish the size of the vector and the number of input vectors. The transfer function used is a sigmoidal function. The learning rate includes values between [0,1] and the error it is recommended to be below 0.1.</description><identifier>ISSN: 1224-3884</identifier><identifier>EISSN: 2068-4762</identifier><language>eng</language><publisher>Iasi: Gheorghe Asachi Technical Universityi of Jassy</publisher><subject>Geotechnics ; Image processing ; Image processing systems ; Learning ; Learning theory ; Mathematical analysis ; Neural networks ; Vectors (mathematics)</subject><ispartof>Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura, 2015-07, Vol.61 (4), p.9-9</ispartof><rights>Copyright Gheorghe Asachi Technical Universityi of Jassy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1785756391/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1785756391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Pandelea, Alexandrina-Elena</creatorcontrib><creatorcontrib>Budescu, Mihai</creatorcontrib><creatorcontrib>Covatariu, Gabriela</creatorcontrib><title>IMAGE PROCESSING USING ARTIFICIAL NEURAL NETWORKS</title><title>Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura</title><description>Image processing using artificial neuronal networks (ANN) has been successfully used in various fields of activity such as geotechnics, civil engineering, mechanics, industrial surveillance, defence department, automatics and transport. Image preprocessing, date reduction, segmentation and recognition are the processes used in managing images with ANN. An image can be represented as a matrix, each element of the matrix containing colour information for a pixel. The matrix is used as input data into the neuronal network. The small dimensions of the images, to easily and quickly help learning, establish the size of the vector and the number of input vectors. The transfer function used is a sigmoidal function. The learning rate includes values between [0,1] and the error it is recommended to be below 0.1.</description><subject>Geotechnics</subject><subject>Image processing</subject><subject>Image processing systems</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Vectors (mathematics)</subject><issn>1224-3884</issn><issn>2068-4762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdjk1Lw0AURQexYKz-h4AbN4F58_FmsgwhjYOxkSSlyzDTTsESm9ox_99QXbm5Z3Pu5d6QiFHUiVDIbkkEjImEay3uyH0IR0oxlQgRAfOWlUX83tR50bZmXcaba2ZNZ1YmN1kVr4tNc0W3rZvX9oEsDnYI_vGPS9Ktii5_Saq6NHlWJWcESEBQv-cOpbUSkaFAFIwq5rmg1DqOTlLc2T31IBQ4p4VH9Hhwdm6kQvElef6dPV_Gr8mH7_7zI-z8MNiTH6fQgwakTKkUZvXpn3ocp8tpPteD0lJJ5LP1A6aZSJw</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Pandelea, Alexandrina-Elena</creator><creator>Budescu, Mihai</creator><creator>Covatariu, Gabriela</creator><general>Gheorghe Asachi Technical Universityi of Jassy</general><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150701</creationdate><title>IMAGE PROCESSING USING ARTIFICIAL NEURAL NETWORKS</title><author>Pandelea, Alexandrina-Elena ; Budescu, Mihai ; Covatariu, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-140ed3b65aa5662646642072e3400ab36b506cad0e1471bb84e66e6fba5aa9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Geotechnics</topic><topic>Image processing</topic><topic>Image processing systems</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandelea, Alexandrina-Elena</creatorcontrib><creatorcontrib>Budescu, Mihai</creatorcontrib><creatorcontrib>Covatariu, Gabriela</creatorcontrib><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandelea, Alexandrina-Elena</au><au>Budescu, Mihai</au><au>Covatariu, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMAGE PROCESSING USING ARTIFICIAL NEURAL NETWORKS</atitle><jtitle>Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>61</volume><issue>4</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><issn>1224-3884</issn><eissn>2068-4762</eissn><abstract>Image processing using artificial neuronal networks (ANN) has been successfully used in various fields of activity such as geotechnics, civil engineering, mechanics, industrial surveillance, defence department, automatics and transport. Image preprocessing, date reduction, segmentation and recognition are the processes used in managing images with ANN. An image can be represented as a matrix, each element of the matrix containing colour information for a pixel. The matrix is used as input data into the neuronal network. The small dimensions of the images, to easily and quickly help learning, establish the size of the vector and the number of input vectors. The transfer function used is a sigmoidal function. The learning rate includes values between [0,1] and the error it is recommended to be below 0.1.</abstract><cop>Iasi</cop><pub>Gheorghe Asachi Technical Universityi of Jassy</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1224-3884
ispartof Buletinul Institutului Politehnic din Iași. Secția 6, Construcții, arhitectura, 2015-07, Vol.61 (4), p.9-9
issn 1224-3884
2068-4762
language eng
recordid cdi_proquest_miscellaneous_1816027791
source Publicly Available Content Database
subjects Geotechnics
Image processing
Image processing systems
Learning
Learning theory
Mathematical analysis
Neural networks
Vectors (mathematics)
title IMAGE PROCESSING USING ARTIFICIAL NEURAL NETWORKS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMAGE%20PROCESSING%20USING%20ARTIFICIAL%20NEURAL%20NETWORKS&rft.jtitle=Buletinul%20Institutului%20Politehnic%20din%20Ias%CC%A6i.%20Sect%CC%A6ia%206,%20Construct%CC%A6ii,%20arhitectura&rft.au=Pandelea,%20Alexandrina-Elena&rft.date=2015-07-01&rft.volume=61&rft.issue=4&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.issn=1224-3884&rft.eissn=2068-4762&rft_id=info:doi/&rft_dat=%3Cproquest%3E1816027791%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p611-140ed3b65aa5662646642072e3400ab36b506cad0e1471bb84e66e6fba5aa9473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1785756391&rft_id=info:pmid/&rfr_iscdi=true