Loading…

Energy-Efficient Cell Activation, User Association, and Spectrum Allocation in Heterogeneous Networks

Next generation (5G) cellular networks are expected to be supported by an extensive infrastructure with many-fold increase in the number of cells per unit area compared to today. The total energy consumption of base transceiver stations (BTSs) is an important issue for both economic and environmenta...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2016-04, Vol.34 (4), p.823-831
Main Authors: Binnan Zhuang, Dongning Guo, Honig, Michael L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Next generation (5G) cellular networks are expected to be supported by an extensive infrastructure with many-fold increase in the number of cells per unit area compared to today. The total energy consumption of base transceiver stations (BTSs) is an important issue for both economic and environmental reasons. In this paper, an optimization-based framework is proposed for energy-efficient global radio resource management in heterogeneous wireless networks. Specifically, with stochastic arrivals of known rates intended for users, the smallest set of BTSs is activated with jointly optimized user association and spectrum allocation to stabilize the network. The average delay is subsequently minimized. The scheme can be carried out periodically on a relatively slow timescale to adapt to aggregate traffic variations and average channel conditions. Numerical results show that the proposed scheme significantly reduces energy consumption and increases quality of service compared to existing schemes.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2016.2544478