Loading…
Numerical approximation of the solution in infinite dimensional global optimization using a representation formula
A non convex optimization problem, involving a regular functional J , on a closed and bounded subset S of a separable Hilbert space V is here considered. No convexity assumption is introduced. The solutions are represented by using a closed formula involving means of convenient random variables, ana...
Saved in:
Published in: | Journal of global optimization 2016-06, Vol.65 (2), p.261-281 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553 |
container_end_page | 281 |
container_issue | 2 |
container_start_page | 261 |
container_title | Journal of global optimization |
container_volume | 65 |
creator | Zidani, H. De Cursi, J. E. Souza Ellaia, R. |
description | A non convex optimization problem, involving a regular functional
J
, on a closed and bounded subset
S
of a separable Hilbert space
V
is here considered. No convexity assumption is introduced. The solutions are represented by using a closed formula involving means of convenient random variables, analogous to Pincus (Oper Res 16(3):690–694,
1968
). The representation suggests a numerical method based on the generation of samples in order to estimate the means. Three strategies for the implementation are examined, with the originality that they do not involve a priori finite dimensional approximation of the solution and consider a hilbertian basis or enumerable dense family of
V
. The results may be improved on a finite-dimensional subspace by an optimization procedure, in order to get higher-quality solutions. Numerical examples involving both classical situation and an engineering application issued from calculus of variations are presented and establish that the method is effective to calculate. |
doi_str_mv | 10.1007/s10898-015-0357-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816040367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718413156</galeid><sourcerecordid>A718413156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553</originalsourceid><addsrcrecordid>eNp1kcFq3TAQRUVpIK9JPyA7QzfdOJVkjyQvQ0jTQEg27VrI0uhVwbZcyYYmX1-5ziIUigSDLveImbmEXDB6ySiVXzKjqlM1ZVDTBmQN78iBgWxq3jHxnhxox6EGStkp-ZDzE6W0U8APJD2sI6ZgzVCZeU7xdxjNEuJURV8tP7HKcVj_vsN2fZjCgpULI065qIU6DrEvJc5LGMPLzq45TMfKVAnnhBmnZZd9TOM6mHNy4s2Q8eNrPSM_vt58v_5W3z_e3l1f3de2UWqpHW9917a0906AdBZBdMZJ3sqGcedRObDGALW9c0VRTEiBDqAXoucWoDkjn_d_y1i_VsyLHkO2OAxmwrhmzQpCW9oIWayf_rE-xTWV8YpLKgnApdxcl7vraAbUZRtxScaW43AMNk7oQ9GvJFMtaxiIArAdsCnmnNDrOZX9pmfNqN5i03tsusSmt9j01jXfmVy80xHTm1b-C_0B_Macsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787552777</pqid></control><display><type>article</type><title>Numerical approximation of the solution in infinite dimensional global optimization using a representation formula</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Zidani, H. ; De Cursi, J. E. Souza ; Ellaia, R.</creator><creatorcontrib>Zidani, H. ; De Cursi, J. E. Souza ; Ellaia, R.</creatorcontrib><description>A non convex optimization problem, involving a regular functional
J
, on a closed and bounded subset
S
of a separable Hilbert space
V
is here considered. No convexity assumption is introduced. The solutions are represented by using a closed formula involving means of convenient random variables, analogous to Pincus (Oper Res 16(3):690–694,
1968
). The representation suggests a numerical method based on the generation of samples in order to estimate the means. Three strategies for the implementation are examined, with the originality that they do not involve a priori finite dimensional approximation of the solution and consider a hilbertian basis or enumerable dense family of
V
. The results may be improved on a finite-dimensional subspace by an optimization procedure, in order to get higher-quality solutions. Numerical examples involving both classical situation and an engineering application issued from calculus of variations are presented and establish that the method is effective to calculate.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-015-0357-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Banach spaces ; Calculus ; Calculus of variations ; Computer Science ; Convexity ; Hilbert space ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Random variables ; Real Functions ; Representations ; Strategy ; Studies</subject><ispartof>Journal of global optimization, 2016-06, Vol.65 (2), p.261-281</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553</citedby><cites>FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1787552777/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1787552777?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids></links><search><creatorcontrib>Zidani, H.</creatorcontrib><creatorcontrib>De Cursi, J. E. Souza</creatorcontrib><creatorcontrib>Ellaia, R.</creatorcontrib><title>Numerical approximation of the solution in infinite dimensional global optimization using a representation formula</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>A non convex optimization problem, involving a regular functional
J
, on a closed and bounded subset
S
of a separable Hilbert space
V
is here considered. No convexity assumption is introduced. The solutions are represented by using a closed formula involving means of convenient random variables, analogous to Pincus (Oper Res 16(3):690–694,
1968
). The representation suggests a numerical method based on the generation of samples in order to estimate the means. Three strategies for the implementation are examined, with the originality that they do not involve a priori finite dimensional approximation of the solution and consider a hilbertian basis or enumerable dense family of
V
. The results may be improved on a finite-dimensional subspace by an optimization procedure, in order to get higher-quality solutions. Numerical examples involving both classical situation and an engineering application issued from calculus of variations are presented and establish that the method is effective to calculate.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Calculus</subject><subject>Calculus of variations</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Real Functions</subject><subject>Representations</subject><subject>Strategy</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kcFq3TAQRUVpIK9JPyA7QzfdOJVkjyQvQ0jTQEg27VrI0uhVwbZcyYYmX1-5ziIUigSDLveImbmEXDB6ySiVXzKjqlM1ZVDTBmQN78iBgWxq3jHxnhxox6EGStkp-ZDzE6W0U8APJD2sI6ZgzVCZeU7xdxjNEuJURV8tP7HKcVj_vsN2fZjCgpULI065qIU6DrEvJc5LGMPLzq45TMfKVAnnhBmnZZd9TOM6mHNy4s2Q8eNrPSM_vt58v_5W3z_e3l1f3de2UWqpHW9917a0906AdBZBdMZJ3sqGcedRObDGALW9c0VRTEiBDqAXoucWoDkjn_d_y1i_VsyLHkO2OAxmwrhmzQpCW9oIWayf_rE-xTWV8YpLKgnApdxcl7vraAbUZRtxScaW43AMNk7oQ9GvJFMtaxiIArAdsCnmnNDrOZX9pmfNqN5i03tsusSmt9j01jXfmVy80xHTm1b-C_0B_Macsw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Zidani, H.</creator><creator>De Cursi, J. E. Souza</creator><creator>Ellaia, R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Numerical approximation of the solution in infinite dimensional global optimization using a representation formula</title><author>Zidani, H. ; De Cursi, J. E. Souza ; Ellaia, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Calculus</topic><topic>Calculus of variations</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Real Functions</topic><topic>Representations</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zidani, H.</creatorcontrib><creatorcontrib>De Cursi, J. E. Souza</creatorcontrib><creatorcontrib>Ellaia, R.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zidani, H.</au><au>De Cursi, J. E. Souza</au><au>Ellaia, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical approximation of the solution in infinite dimensional global optimization using a representation formula</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>65</volume><issue>2</issue><spage>261</spage><epage>281</epage><pages>261-281</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>A non convex optimization problem, involving a regular functional
J
, on a closed and bounded subset
S
of a separable Hilbert space
V
is here considered. No convexity assumption is introduced. The solutions are represented by using a closed formula involving means of convenient random variables, analogous to Pincus (Oper Res 16(3):690–694,
1968
). The representation suggests a numerical method based on the generation of samples in order to estimate the means. Three strategies for the implementation are examined, with the originality that they do not involve a priori finite dimensional approximation of the solution and consider a hilbertian basis or enumerable dense family of
V
. The results may be improved on a finite-dimensional subspace by an optimization procedure, in order to get higher-quality solutions. Numerical examples involving both classical situation and an engineering application issued from calculus of variations are presented and establish that the method is effective to calculate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-015-0357-5</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2016-06, Vol.65 (2), p.261-281 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816040367 |
source | ABI/INFORM global; Springer Nature |
subjects | Algorithms Approximation Banach spaces Calculus Calculus of variations Computer Science Convexity Hilbert space Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Random variables Real Functions Representations Strategy Studies |
title | Numerical approximation of the solution in infinite dimensional global optimization using a representation formula |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20approximation%20of%20the%20solution%20in%20infinite%20dimensional%20global%20optimization%20using%20a%20representation%20formula&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Zidani,%20H.&rft.date=2016-06-01&rft.volume=65&rft.issue=2&rft.spage=261&rft.epage=281&rft.pages=261-281&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-015-0357-5&rft_dat=%3Cgale_proqu%3EA718413156%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-d24f9440bfd657dce569ad7247312dfe8d5caa50cbdd31281676ed55b66b2c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787552777&rft_id=info:pmid/&rft_galeid=A718413156&rfr_iscdi=true |