Loading…
Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries
Reduced graphene oxide/carbon nanotubes (CNTs) sponge (GCNTS) is fabricated via a simple freeze drying of graphene oxide/CNTs mixed solution and subsequent thermal treatment in nitrogen atmosphere, and used as anodes for sodium-ion batteries (SIBs) for the first time. The morphology, structure and e...
Saved in:
Published in: | Journal of power sources 2016-06, Vol.316, p.132-138 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reduced graphene oxide/carbon nanotubes (CNTs) sponge (GCNTS) is fabricated via a simple freeze drying of graphene oxide/CNTs mixed solution and subsequent thermal treatment in nitrogen atmosphere, and used as anodes for sodium-ion batteries (SIBs) for the first time. The morphology, structure and electrochemical performance of GCNTS are characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, nitrogen adsorption-desorption isotherms, galvanostatic charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The results show that GCNTS with 20 wt % CNTs has a highest charge capacity of 436 mA h g−1 after 100 cycles at a current density of 50 mA g−1 and even at a high current density of 10 A g−1, a capacity of 195 mA h g−1 is maintained after 7440 cycles. The high capacity, excellent rate performance and long life cycling enable the GCNTS to be a promising candidate for practical SIBs.
•Graphene/carbon nanotubes sponge was fabricated via a simple freeze drying method.•The hybrid sponge was employed as anode materials of sodium ion batteries.•The hybrid sponge exhibits high capacity and superior long life cycling stability. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2016.03.050 |