Loading…

Classification of Implantable Rotary Blood Pump States With Class Noise

A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% cl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2016-05, Vol.20 (3), p.829-837
Main Authors: Hui-Lee Ooi, Seera, Manjeevan, Siew-Cheok Ng, Chee Peng Lim, Chu Kiong Loo, Lovell, Nigel H., Redmond, Stephen J., Einly Lim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83
container_end_page 837
container_issue 3
container_start_page 829
container_title IEEE journal of biomedical and health informatics
container_volume 20
creator Hui-Lee Ooi
Seera, Manjeevan
Siew-Cheok Ng
Chee Peng Lim
Chu Kiong Loo
Lovell, Nigel H.
Redmond, Stephen J.
Einly Lim
description A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.
doi_str_mv 10.1109/JBHI.2015.2412375
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816044409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7059193</ieee_id><sourcerecordid>1816044409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EolXpByAkZIkNmxR7nDj2klbQFlWAeIhl5DiOSJXUIU4W_D0OfSxY4Y2t8blXM3MROqdkQimRNw_TxXIChEYTCCmwODpCQ6BcBABEHO_fVIYDNHZuTfwRviT5KRpAFAsqORui-axUzhV5oVVb2A22OV5Wdak2rUpLg19sq5pvPC2tzfBzV9X4tVWtcfijaD_xrxY_2sKZM3SSq9KZ8e4eoff7u7fZIlg9zZez21WgGY_bAPIozCTVmgOIVDEjlAxTpiAnnGgRpdqXCYEMMq3iiAlDwjDluVBG5lwLNkLXW9-6sV-dcW1SFU6b0ndsbOcSKoBzvxUu_4FS7t1D8g80lkSCgLBHr_6ga9s1Gz-zp4RgMQNgnqJbSjfWucbkSd0UlV9lQknSx5f08SV9fMkuPq-53Dl3aWWyg2IflgcutkBhjDl8xySSVDL2A7q_m0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788373223</pqid></control><display><type>article</type><title>Classification of Implantable Rotary Blood Pump States With Class Noise</title><source>IEEE Xplore (Online service)</source><creator>Hui-Lee Ooi ; Seera, Manjeevan ; Siew-Cheok Ng ; Chee Peng Lim ; Chu Kiong Loo ; Lovell, Nigel H. ; Redmond, Stephen J. ; Einly Lim</creator><creatorcontrib>Hui-Lee Ooi ; Seera, Manjeevan ; Siew-Cheok Ng ; Chee Peng Lim ; Chu Kiong Loo ; Lovell, Nigel H. ; Redmond, Stephen J. ; Einly Lim</creatorcontrib><description>A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2015.2412375</identifier><identifier>PMID: 25781963</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Blood ; Blood pumps ; class noise ; Classification ; classifier ; Classifiers ; Diagnostic systems ; Dogs ; ensemble classifier ; Heart ; Heart-Assist Devices - classification ; Hemorheology ; implantable rotary blood pump ; Informatics ; left ventricular assist device ; mislabeling ; Models, Theoretical ; Neural Networks (Computer) ; Noise ; pump state classification ; Pumps ; Robustness ; Signal Processing, Computer-Assisted ; Training ; Valves</subject><ispartof>IEEE journal of biomedical and health informatics, 2016-05, Vol.20 (3), p.829-837</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7059193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25781963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui-Lee Ooi</creatorcontrib><creatorcontrib>Seera, Manjeevan</creatorcontrib><creatorcontrib>Siew-Cheok Ng</creatorcontrib><creatorcontrib>Chee Peng Lim</creatorcontrib><creatorcontrib>Chu Kiong Loo</creatorcontrib><creatorcontrib>Lovell, Nigel H.</creatorcontrib><creatorcontrib>Redmond, Stephen J.</creatorcontrib><creatorcontrib>Einly Lim</creatorcontrib><title>Classification of Implantable Rotary Blood Pump States With Class Noise</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood pumps</subject><subject>class noise</subject><subject>Classification</subject><subject>classifier</subject><subject>Classifiers</subject><subject>Diagnostic systems</subject><subject>Dogs</subject><subject>ensemble classifier</subject><subject>Heart</subject><subject>Heart-Assist Devices - classification</subject><subject>Hemorheology</subject><subject>implantable rotary blood pump</subject><subject>Informatics</subject><subject>left ventricular assist device</subject><subject>mislabeling</subject><subject>Models, Theoretical</subject><subject>Neural Networks (Computer)</subject><subject>Noise</subject><subject>pump state classification</subject><subject>Pumps</subject><subject>Robustness</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Training</subject><subject>Valves</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EolXpByAkZIkNmxR7nDj2klbQFlWAeIhl5DiOSJXUIU4W_D0OfSxY4Y2t8blXM3MROqdkQimRNw_TxXIChEYTCCmwODpCQ6BcBABEHO_fVIYDNHZuTfwRviT5KRpAFAsqORui-axUzhV5oVVb2A22OV5Wdak2rUpLg19sq5pvPC2tzfBzV9X4tVWtcfijaD_xrxY_2sKZM3SSq9KZ8e4eoff7u7fZIlg9zZez21WgGY_bAPIozCTVmgOIVDEjlAxTpiAnnGgRpdqXCYEMMq3iiAlDwjDluVBG5lwLNkLXW9-6sV-dcW1SFU6b0ndsbOcSKoBzvxUu_4FS7t1D8g80lkSCgLBHr_6ga9s1Gz-zp4RgMQNgnqJbSjfWucbkSd0UlV9lQknSx5f08SV9fMkuPq-53Dl3aWWyg2IflgcutkBhjDl8xySSVDL2A7q_m0E</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Hui-Lee Ooi</creator><creator>Seera, Manjeevan</creator><creator>Siew-Cheok Ng</creator><creator>Chee Peng Lim</creator><creator>Chu Kiong Loo</creator><creator>Lovell, Nigel H.</creator><creator>Redmond, Stephen J.</creator><creator>Einly Lim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Classification of Implantable Rotary Blood Pump States With Class Noise</title><author>Hui-Lee Ooi ; Seera, Manjeevan ; Siew-Cheok Ng ; Chee Peng Lim ; Chu Kiong Loo ; Lovell, Nigel H. ; Redmond, Stephen J. ; Einly Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood pumps</topic><topic>class noise</topic><topic>Classification</topic><topic>classifier</topic><topic>Classifiers</topic><topic>Diagnostic systems</topic><topic>Dogs</topic><topic>ensemble classifier</topic><topic>Heart</topic><topic>Heart-Assist Devices - classification</topic><topic>Hemorheology</topic><topic>implantable rotary blood pump</topic><topic>Informatics</topic><topic>left ventricular assist device</topic><topic>mislabeling</topic><topic>Models, Theoretical</topic><topic>Neural Networks (Computer)</topic><topic>Noise</topic><topic>pump state classification</topic><topic>Pumps</topic><topic>Robustness</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Training</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui-Lee Ooi</creatorcontrib><creatorcontrib>Seera, Manjeevan</creatorcontrib><creatorcontrib>Siew-Cheok Ng</creatorcontrib><creatorcontrib>Chee Peng Lim</creatorcontrib><creatorcontrib>Chu Kiong Loo</creatorcontrib><creatorcontrib>Lovell, Nigel H.</creatorcontrib><creatorcontrib>Redmond, Stephen J.</creatorcontrib><creatorcontrib>Einly Lim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui-Lee Ooi</au><au>Seera, Manjeevan</au><au>Siew-Cheok Ng</au><au>Chee Peng Lim</au><au>Chu Kiong Loo</au><au>Lovell, Nigel H.</au><au>Redmond, Stephen J.</au><au>Einly Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Implantable Rotary Blood Pump States With Class Noise</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2016-05</date><risdate>2016</risdate><volume>20</volume><issue>3</issue><spage>829</spage><epage>837</epage><pages>829-837</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25781963</pmid><doi>10.1109/JBHI.2015.2412375</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2016-05, Vol.20 (3), p.829-837
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_miscellaneous_1816044409
source IEEE Xplore (Online service)
subjects Animals
Blood
Blood pumps
class noise
Classification
classifier
Classifiers
Diagnostic systems
Dogs
ensemble classifier
Heart
Heart-Assist Devices - classification
Hemorheology
implantable rotary blood pump
Informatics
left ventricular assist device
mislabeling
Models, Theoretical
Neural Networks (Computer)
Noise
pump state classification
Pumps
Robustness
Signal Processing, Computer-Assisted
Training
Valves
title Classification of Implantable Rotary Blood Pump States With Class Noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Implantable%20Rotary%20Blood%20Pump%20States%20With%20Class%20Noise&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Hui-Lee%20Ooi&rft.date=2016-05&rft.volume=20&rft.issue=3&rft.spage=829&rft.epage=837&rft.pages=829-837&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2015.2412375&rft_dat=%3Cproquest_ieee_%3E1816044409%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788373223&rft_id=info:pmid/25781963&rft_ieee_id=7059193&rfr_iscdi=true