Loading…
Classification of Implantable Rotary Blood Pump States With Class Noise
A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% cl...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2016-05, Vol.20 (3), p.829-837 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83 |
container_end_page | 837 |
container_issue | 3 |
container_start_page | 829 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 20 |
creator | Hui-Lee Ooi Seera, Manjeevan Siew-Cheok Ng Chee Peng Lim Chu Kiong Loo Lovell, Nigel H. Redmond, Stephen J. Einly Lim |
description | A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise. |
doi_str_mv | 10.1109/JBHI.2015.2412375 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816044409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7059193</ieee_id><sourcerecordid>1816044409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EolXpByAkZIkNmxR7nDj2klbQFlWAeIhl5DiOSJXUIU4W_D0OfSxY4Y2t8blXM3MROqdkQimRNw_TxXIChEYTCCmwODpCQ6BcBABEHO_fVIYDNHZuTfwRviT5KRpAFAsqORui-axUzhV5oVVb2A22OV5Wdak2rUpLg19sq5pvPC2tzfBzV9X4tVWtcfijaD_xrxY_2sKZM3SSq9KZ8e4eoff7u7fZIlg9zZez21WgGY_bAPIozCTVmgOIVDEjlAxTpiAnnGgRpdqXCYEMMq3iiAlDwjDluVBG5lwLNkLXW9-6sV-dcW1SFU6b0ndsbOcSKoBzvxUu_4FS7t1D8g80lkSCgLBHr_6ga9s1Gz-zp4RgMQNgnqJbSjfWucbkSd0UlV9lQknSx5f08SV9fMkuPq-53Dl3aWWyg2IflgcutkBhjDl8xySSVDL2A7q_m0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788373223</pqid></control><display><type>article</type><title>Classification of Implantable Rotary Blood Pump States With Class Noise</title><source>IEEE Xplore (Online service)</source><creator>Hui-Lee Ooi ; Seera, Manjeevan ; Siew-Cheok Ng ; Chee Peng Lim ; Chu Kiong Loo ; Lovell, Nigel H. ; Redmond, Stephen J. ; Einly Lim</creator><creatorcontrib>Hui-Lee Ooi ; Seera, Manjeevan ; Siew-Cheok Ng ; Chee Peng Lim ; Chu Kiong Loo ; Lovell, Nigel H. ; Redmond, Stephen J. ; Einly Lim</creatorcontrib><description>A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2015.2412375</identifier><identifier>PMID: 25781963</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Blood ; Blood pumps ; class noise ; Classification ; classifier ; Classifiers ; Diagnostic systems ; Dogs ; ensemble classifier ; Heart ; Heart-Assist Devices - classification ; Hemorheology ; implantable rotary blood pump ; Informatics ; left ventricular assist device ; mislabeling ; Models, Theoretical ; Neural Networks (Computer) ; Noise ; pump state classification ; Pumps ; Robustness ; Signal Processing, Computer-Assisted ; Training ; Valves</subject><ispartof>IEEE journal of biomedical and health informatics, 2016-05, Vol.20 (3), p.829-837</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7059193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25781963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui-Lee Ooi</creatorcontrib><creatorcontrib>Seera, Manjeevan</creatorcontrib><creatorcontrib>Siew-Cheok Ng</creatorcontrib><creatorcontrib>Chee Peng Lim</creatorcontrib><creatorcontrib>Chu Kiong Loo</creatorcontrib><creatorcontrib>Lovell, Nigel H.</creatorcontrib><creatorcontrib>Redmond, Stephen J.</creatorcontrib><creatorcontrib>Einly Lim</creatorcontrib><title>Classification of Implantable Rotary Blood Pump States With Class Noise</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood pumps</subject><subject>class noise</subject><subject>Classification</subject><subject>classifier</subject><subject>Classifiers</subject><subject>Diagnostic systems</subject><subject>Dogs</subject><subject>ensemble classifier</subject><subject>Heart</subject><subject>Heart-Assist Devices - classification</subject><subject>Hemorheology</subject><subject>implantable rotary blood pump</subject><subject>Informatics</subject><subject>left ventricular assist device</subject><subject>mislabeling</subject><subject>Models, Theoretical</subject><subject>Neural Networks (Computer)</subject><subject>Noise</subject><subject>pump state classification</subject><subject>Pumps</subject><subject>Robustness</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Training</subject><subject>Valves</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EolXpByAkZIkNmxR7nDj2klbQFlWAeIhl5DiOSJXUIU4W_D0OfSxY4Y2t8blXM3MROqdkQimRNw_TxXIChEYTCCmwODpCQ6BcBABEHO_fVIYDNHZuTfwRviT5KRpAFAsqORui-axUzhV5oVVb2A22OV5Wdak2rUpLg19sq5pvPC2tzfBzV9X4tVWtcfijaD_xrxY_2sKZM3SSq9KZ8e4eoff7u7fZIlg9zZez21WgGY_bAPIozCTVmgOIVDEjlAxTpiAnnGgRpdqXCYEMMq3iiAlDwjDluVBG5lwLNkLXW9-6sV-dcW1SFU6b0ndsbOcSKoBzvxUu_4FS7t1D8g80lkSCgLBHr_6ga9s1Gz-zp4RgMQNgnqJbSjfWucbkSd0UlV9lQknSx5f08SV9fMkuPq-53Dl3aWWyg2IflgcutkBhjDl8xySSVDL2A7q_m0E</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Hui-Lee Ooi</creator><creator>Seera, Manjeevan</creator><creator>Siew-Cheok Ng</creator><creator>Chee Peng Lim</creator><creator>Chu Kiong Loo</creator><creator>Lovell, Nigel H.</creator><creator>Redmond, Stephen J.</creator><creator>Einly Lim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Classification of Implantable Rotary Blood Pump States With Class Noise</title><author>Hui-Lee Ooi ; Seera, Manjeevan ; Siew-Cheok Ng ; Chee Peng Lim ; Chu Kiong Loo ; Lovell, Nigel H. ; Redmond, Stephen J. ; Einly Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood pumps</topic><topic>class noise</topic><topic>Classification</topic><topic>classifier</topic><topic>Classifiers</topic><topic>Diagnostic systems</topic><topic>Dogs</topic><topic>ensemble classifier</topic><topic>Heart</topic><topic>Heart-Assist Devices - classification</topic><topic>Hemorheology</topic><topic>implantable rotary blood pump</topic><topic>Informatics</topic><topic>left ventricular assist device</topic><topic>mislabeling</topic><topic>Models, Theoretical</topic><topic>Neural Networks (Computer)</topic><topic>Noise</topic><topic>pump state classification</topic><topic>Pumps</topic><topic>Robustness</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Training</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui-Lee Ooi</creatorcontrib><creatorcontrib>Seera, Manjeevan</creatorcontrib><creatorcontrib>Siew-Cheok Ng</creatorcontrib><creatorcontrib>Chee Peng Lim</creatorcontrib><creatorcontrib>Chu Kiong Loo</creatorcontrib><creatorcontrib>Lovell, Nigel H.</creatorcontrib><creatorcontrib>Redmond, Stephen J.</creatorcontrib><creatorcontrib>Einly Lim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui-Lee Ooi</au><au>Seera, Manjeevan</au><au>Siew-Cheok Ng</au><au>Chee Peng Lim</au><au>Chu Kiong Loo</au><au>Lovell, Nigel H.</au><au>Redmond, Stephen J.</au><au>Einly Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Implantable Rotary Blood Pump States With Class Noise</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2016-05</date><risdate>2016</risdate><volume>20</volume><issue>3</issue><spage>829</spage><epage>837</epage><pages>829-837</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25781963</pmid><doi>10.1109/JBHI.2015.2412375</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2016-05, Vol.20 (3), p.829-837 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816044409 |
source | IEEE Xplore (Online service) |
subjects | Animals Blood Blood pumps class noise Classification classifier Classifiers Diagnostic systems Dogs ensemble classifier Heart Heart-Assist Devices - classification Hemorheology implantable rotary blood pump Informatics left ventricular assist device mislabeling Models, Theoretical Neural Networks (Computer) Noise pump state classification Pumps Robustness Signal Processing, Computer-Assisted Training Valves |
title | Classification of Implantable Rotary Blood Pump States With Class Noise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Implantable%20Rotary%20Blood%20Pump%20States%20With%20Class%20Noise&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Hui-Lee%20Ooi&rft.date=2016-05&rft.volume=20&rft.issue=3&rft.spage=829&rft.epage=837&rft.pages=829-837&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2015.2412375&rft_dat=%3Cproquest_ieee_%3E1816044409%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-2f54d91cc6228ba3e8a94b3a2f060c85bc28b002d2dca7538e044b6f8ae9f6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788373223&rft_id=info:pmid/25781963&rft_ieee_id=7059193&rfr_iscdi=true |