Loading…

Thermal Decomposition of 3‑Bromopropene. A Theoretical Kinetic Investigation

A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide th...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-04, Vol.120 (15), p.2285-2294
Main Authors: Tucceri, María E, Badenes, María P, Bracco, Larisa L. B, Cobos, Carlos J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3
cites cdi_FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3
container_end_page 2294
container_issue 15
container_start_page 2285
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 120
creator Tucceri, María E
Badenes, María P
Bracco, Larisa L. B
Cobos, Carlos J
description A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2CH–CH2Br → CH2CCH2 + HBr (1) and CH2CH–CH2Br → CH2CH–CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction () is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500–1400 K range a rate constant for the primary dissociation of k 2,∞ = 4.8 × 1014 exp­(−55.0 kcal mol–1/RT) s–1 is predicted at the G4 level. The calculated k 1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol–1 for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations.
doi_str_mv 10.1021/acs.jpca.5b12581
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816044918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1783913939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqWwM6GMDKTcaztOPJbyV1HBUubISRxI1cTBTpHYeAVekSfBoYUNoTv4Duf7rnUIOUYYI1A8V7kbL9tcjaMMaZTgDhliRCGMKEa7fodEhpFgckAOnFsCADLK98mAxkBZjMmQ3C-eta3VKrjUualb46quMk1gyoB9vn9cWFOb1ppWN3ocTAIPG6u7KveBu6rpt2DWvGrXVU-qDx6SvVKtnD7aviPyeH21mN6G84eb2XQyDxUTsgsLLnii8qzEOOeMZQILqgBjyQWwTAGnEkGKSBYSikxJypjQQijGuALJCjYip5te_7mXtb-f1pXL9WqlGm3WLsUEBXAuMfkfjRMmkUk_IwIbNLfGOavLtLVVrexbipD2wlMvPO2Fp1vhPnKybV9ntS5-Az-GPXC2Ab6jZm0b7-Xvvi87UYuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783913939</pqid></control><display><type>article</type><title>Thermal Decomposition of 3‑Bromopropene. A Theoretical Kinetic Investigation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tucceri, María E ; Badenes, María P ; Bracco, Larisa L. B ; Cobos, Carlos J</creator><creatorcontrib>Tucceri, María E ; Badenes, María P ; Bracco, Larisa L. B ; Cobos, Carlos J</creatorcontrib><description>A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2CH–CH2Br → CH2CCH2 + HBr (1) and CH2CH–CH2Br → CH2CH–CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction () is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500–1400 K range a rate constant for the primary dissociation of k 2,∞ = 4.8 × 1014 exp­(−55.0 kcal mol–1/RT) s–1 is predicted at the G4 level. The calculated k 1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol–1 for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.5b12581</identifier><identifier>PMID: 27023718</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bonding ; Channels ; Chemical reactions ; Density functional theory ; Mathematical models ; Rate theory ; Thermal decomposition</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2016-04, Vol.120 (15), p.2285-2294</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3</citedby><cites>FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27023718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tucceri, María E</creatorcontrib><creatorcontrib>Badenes, María P</creatorcontrib><creatorcontrib>Bracco, Larisa L. B</creatorcontrib><creatorcontrib>Cobos, Carlos J</creatorcontrib><title>Thermal Decomposition of 3‑Bromopropene. A Theoretical Kinetic Investigation</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2CH–CH2Br → CH2CCH2 + HBr (1) and CH2CH–CH2Br → CH2CH–CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction () is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500–1400 K range a rate constant for the primary dissociation of k 2,∞ = 4.8 × 1014 exp­(−55.0 kcal mol–1/RT) s–1 is predicted at the G4 level. The calculated k 1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol–1 for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations.</description><subject>Bonding</subject><subject>Channels</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>Mathematical models</subject><subject>Rate theory</subject><subject>Thermal decomposition</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EoqWwM6GMDKTcaztOPJbyV1HBUubISRxI1cTBTpHYeAVekSfBoYUNoTv4Duf7rnUIOUYYI1A8V7kbL9tcjaMMaZTgDhliRCGMKEa7fodEhpFgckAOnFsCADLK98mAxkBZjMmQ3C-eta3VKrjUualb46quMk1gyoB9vn9cWFOb1ppWN3ocTAIPG6u7KveBu6rpt2DWvGrXVU-qDx6SvVKtnD7aviPyeH21mN6G84eb2XQyDxUTsgsLLnii8qzEOOeMZQILqgBjyQWwTAGnEkGKSBYSikxJypjQQijGuALJCjYip5te_7mXtb-f1pXL9WqlGm3WLsUEBXAuMfkfjRMmkUk_IwIbNLfGOavLtLVVrexbipD2wlMvPO2Fp1vhPnKybV9ntS5-Az-GPXC2Ab6jZm0b7-Xvvi87UYuQ</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Tucceri, María E</creator><creator>Badenes, María P</creator><creator>Bracco, Larisa L. B</creator><creator>Cobos, Carlos J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160421</creationdate><title>Thermal Decomposition of 3‑Bromopropene. A Theoretical Kinetic Investigation</title><author>Tucceri, María E ; Badenes, María P ; Bracco, Larisa L. B ; Cobos, Carlos J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bonding</topic><topic>Channels</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>Mathematical models</topic><topic>Rate theory</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucceri, María E</creatorcontrib><creatorcontrib>Badenes, María P</creatorcontrib><creatorcontrib>Bracco, Larisa L. B</creatorcontrib><creatorcontrib>Cobos, Carlos J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucceri, María E</au><au>Badenes, María P</au><au>Bracco, Larisa L. B</au><au>Cobos, Carlos J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Decomposition of 3‑Bromopropene. A Theoretical Kinetic Investigation</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2016-04-21</date><risdate>2016</risdate><volume>120</volume><issue>15</issue><spage>2285</spage><epage>2294</epage><pages>2285-2294</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2CH–CH2Br → CH2CCH2 + HBr (1) and CH2CH–CH2Br → CH2CH–CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction () is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500–1400 K range a rate constant for the primary dissociation of k 2,∞ = 4.8 × 1014 exp­(−55.0 kcal mol–1/RT) s–1 is predicted at the G4 level. The calculated k 1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol–1 for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27023718</pmid><doi>10.1021/acs.jpca.5b12581</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-04, Vol.120 (15), p.2285-2294
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1816044918
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bonding
Channels
Chemical reactions
Density functional theory
Mathematical models
Rate theory
Thermal decomposition
title Thermal Decomposition of 3‑Bromopropene. A Theoretical Kinetic Investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Decomposition%20of%203%E2%80%91Bromopropene.%20A%20Theoretical%20Kinetic%20Investigation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Tucceri,%20Mari%CC%81a%20E&rft.date=2016-04-21&rft.volume=120&rft.issue=15&rft.spage=2285&rft.epage=2294&rft.pages=2285-2294&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.5b12581&rft_dat=%3Cproquest_cross%3E1783913939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-d4648acbf17c433b61d2a01794603ba0429109659d90dba92336e66a334a093d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1783913939&rft_id=info:pmid/27023718&rfr_iscdi=true