Loading…

Interfacial evaluation of epoxy/carbon nanofiber nanocomposite reinforced with glycidyl methacrylate treated UHMWPE fiber

ABSTRACT Interface interactions of fiber–matrix play a crucial role in final performance of polymer composites. Herein, in situ polymerization of glycidyl methacrylate (GMA) on the ultrahigh molecular weight polyethylene (UHMWPE) fibers surface was proposed for improving the surface activity and adh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2016-08, Vol.133 (31), p.np-n/a
Main Authors: Ahmadi, Mojtaba, Masoomi, Mahmood, Safi, Somayeh, Zabihi, Omid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Interface interactions of fiber–matrix play a crucial role in final performance of polymer composites. Herein, in situ polymerization of glycidyl methacrylate (GMA) on the ultrahigh molecular weight polyethylene (UHMWPE) fibers surface was proposed for improving the surface activity and adhesion property of UHMWPE fibers towards carbon nanofibers (CNF)‐epoxy nanocomposites. Chemical treatment of UHMWPE fibers was characterized by FTIR, XPS analysis, SEM, and microdroplet tests, confirming that the grafting of poly (GMA) chains on the surface alongside a significant synergy in the interfacial properties. SEM evaluations also exhibited cohesive type of failure for the samples when both GMA‐treated UHMWPE fiber and CNF were used to reinforce epoxy matrix. Compared with unmodified composite, a ∼319% increase in interfacial shear strength was observed for the samples reinforced with both 5 wt % GMA‐grafted UHMWPE and 0.5 wt % of CNF. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43751.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.43751