Loading…

GaAs nanowires grown by Ga-assisted chemical beam epitaxy: Substrate preparation and growth kinetics

Growth kinetics of GaAs nanowires (NWs) on Si(111) substrates by Ga-assisted chemical beam epitaxy is studied as a function of growth conditions such as substrate temperature (Ts), V/III flux ratio and catalyst dimension. The preparation method for Si(111) substrates is optimized in order to obtain...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2015-11, Vol.430, p.108-115
Main Authors: Nunez, CGarcia, Brana, A F, Lopez, N, Garcia, B J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Growth kinetics of GaAs nanowires (NWs) on Si(111) substrates by Ga-assisted chemical beam epitaxy is studied as a function of growth conditions such as substrate temperature (Ts), V/III flux ratio and catalyst dimension. The preparation method for Si(111) substrates is optimized in order to obtain a thin surface oxide with a thickness around 0.5nm, allowing both the decomposition of metalorganic precursors and GaAs nucleation at oxide pinholes. The use of thinner oxides enables the growth of a GaAs layer whereas the utilization of thicker oxides could even inhibit GaAs nucleation. The successful self-formation of Ga droplets over this slightly oxidized Si surface has been observed by scanning electron microscopy (SEM), whose initial size is demonstrated to affect both the NW growth rate and the resultant NW aspect ratio. The formation of these droplets is crucial to enable the catalytic growth of NWs whose morphology is thoroughly analyzed by SEM, showing a self-organized array of vertically aligned match shaped GaAs NWs with a hexagonal footprint. In addition, the crystalline structure of NWs is monitored in-situ by reflection high energy diffraction, showing pure zincblende phase along the whole NW stem. In terms of better NW aspect ratio, higher crystalline quality and faster growth rates, the best NW growth conditions are found at Ts=580°C, using an effective flux ratio V/III≈0.8. Moreover, NW growth kinetics is demonstrated to be improved when using a pre-deposited Ga coverage of 7.5 monolayers, stabilized for 90s prior to the NW growth. •GaAs NWs are grown by Ga-assisted CBE on oxidized Si(111).•NW growth is observed using a 0.3nm SiOx thick surface layer.•NW aspect ratio is strongly influenced by growth conditions.•Best growth conditions are found at Ts=580°C and V/III=0.8.•RHEED shows the growth of pure ZB phase GaAs NWs.
ISSN:0022-0248
1873-5002
DOI:10.1016/j.jcrysgro.2015.08.008