Loading…

On a local Fourier analysis for overlapping block smoothers on triangular grids

A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element dis...

Full description

Saved in:
Bibliographic Details
Published in:Applied numerical mathematics 2016-07, Vol.105, p.96-111
Main Authors: Rodrigo, C., Gaspar, F.J., Lisbona, F.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983
cites cdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983
container_end_page 111
container_issue
container_start_page 96
container_title Applied numerical mathematics
container_volume 105
creator Rodrigo, C.
Gaspar, F.J.
Lisbona, F.J.
description A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.
doi_str_mv 10.1016/j.apnum.2016.02.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816054821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927416300022</els_id><sourcerecordid>1816054821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siSc448kAwOqKCBV6gKz5TqX4pLGwU4q9d9jKDPT6dU970n3EHLLIGfA1P0uN0M_7fMihRyKHECdkRmrSp5JoeCczNKiyuqiFJfkKsYdAEgpYEbW654a2nlrOrr0U3AYqOlNd4wu0tYH6g8YOjMMrt_STeI-adx7P35giNT3dAzO9NupM4Fug2viNbloTRfx5m_Oyfvy6W3xkq3Wz6-Lx1VmecXGzAI0ZVUaWTcbKzZQl6JuoFRC8LblBluFynIUolUFyoYBl2hly5k1qrJ1xefk7nR3CP5rwjjqvYsWu8706KeoWcUUSFEVLKH8hNrgYwzY6iG4vQlHzUD_6NM7_atP_-jTUOikL7UeTi1MXxySFh2tw95i4wLaUTfe_dv_Bu4GeqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816054821</pqid></control><display><type>article</type><title>On a local Fourier analysis for overlapping block smoothers on triangular grids</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Rodrigo, C. ; Gaspar, F.J. ; Lisbona, F.J.</creator><creatorcontrib>Rodrigo, C. ; Gaspar, F.J. ; Lisbona, F.J.</creatorcontrib><description>A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2016.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Blocking ; Box-relaxation ; Convergence ; Discretization ; Finite element method ; Fourier analysis ; Local Fourier analysis ; Mathematical analysis ; Mathematical models ; Multigrid ; Nédélec ; Overlapping block smoothers ; Saddle point type problems ; Stokes ; Triangular grids ; Vanka smoothers</subject><ispartof>Applied numerical mathematics, 2016-07, Vol.105, p.96-111</ispartof><rights>2016 IMACS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</citedby><cites>FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927416300022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F.J.</creatorcontrib><creatorcontrib>Lisbona, F.J.</creatorcontrib><title>On a local Fourier analysis for overlapping block smoothers on triangular grids</title><title>Applied numerical mathematics</title><description>A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.</description><subject>Asymptotic properties</subject><subject>Blocking</subject><subject>Box-relaxation</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>Fourier analysis</subject><subject>Local Fourier analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multigrid</subject><subject>Nédélec</subject><subject>Overlapping block smoothers</subject><subject>Saddle point type problems</subject><subject>Stokes</subject><subject>Triangular grids</subject><subject>Vanka smoothers</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siSc448kAwOqKCBV6gKz5TqX4pLGwU4q9d9jKDPT6dU970n3EHLLIGfA1P0uN0M_7fMihRyKHECdkRmrSp5JoeCczNKiyuqiFJfkKsYdAEgpYEbW654a2nlrOrr0U3AYqOlNd4wu0tYH6g8YOjMMrt_STeI-adx7P35giNT3dAzO9NupM4Fug2viNbloTRfx5m_Oyfvy6W3xkq3Wz6-Lx1VmecXGzAI0ZVUaWTcbKzZQl6JuoFRC8LblBluFynIUolUFyoYBl2hly5k1qrJ1xefk7nR3CP5rwjjqvYsWu8706KeoWcUUSFEVLKH8hNrgYwzY6iG4vQlHzUD_6NM7_atP_-jTUOikL7UeTi1MXxySFh2tw95i4wLaUTfe_dv_Bu4GeqA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Rodrigo, C.</creator><creator>Gaspar, F.J.</creator><creator>Lisbona, F.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201607</creationdate><title>On a local Fourier analysis for overlapping block smoothers on triangular grids</title><author>Rodrigo, C. ; Gaspar, F.J. ; Lisbona, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Blocking</topic><topic>Box-relaxation</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>Fourier analysis</topic><topic>Local Fourier analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multigrid</topic><topic>Nédélec</topic><topic>Overlapping block smoothers</topic><topic>Saddle point type problems</topic><topic>Stokes</topic><topic>Triangular grids</topic><topic>Vanka smoothers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F.J.</creatorcontrib><creatorcontrib>Lisbona, F.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigo, C.</au><au>Gaspar, F.J.</au><au>Lisbona, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a local Fourier analysis for overlapping block smoothers on triangular grids</atitle><jtitle>Applied numerical mathematics</jtitle><date>2016-07</date><risdate>2016</risdate><volume>105</volume><spage>96</spage><epage>111</epage><pages>96-111</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2016.02.006</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2016-07, Vol.105, p.96-111
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_1816054821
source ScienceDirect Freedom Collection 2022-2024; Backfile Package - Mathematics (Legacy) [YMT]
subjects Asymptotic properties
Blocking
Box-relaxation
Convergence
Discretization
Finite element method
Fourier analysis
Local Fourier analysis
Mathematical analysis
Mathematical models
Multigrid
Nédélec
Overlapping block smoothers
Saddle point type problems
Stokes
Triangular grids
Vanka smoothers
title On a local Fourier analysis for overlapping block smoothers on triangular grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20local%20Fourier%20analysis%20for%20overlapping%20block%20smoothers%20on%20triangular%20grids&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Rodrigo,%20C.&rft.date=2016-07&rft.volume=105&rft.spage=96&rft.epage=111&rft.pages=96-111&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2016.02.006&rft_dat=%3Cproquest_cross%3E1816054821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816054821&rft_id=info:pmid/&rfr_iscdi=true