Loading…
On a local Fourier analysis for overlapping block smoothers on triangular grids
A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element dis...
Saved in:
Published in: | Applied numerical mathematics 2016-07, Vol.105, p.96-111 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983 |
container_end_page | 111 |
container_issue | |
container_start_page | 96 |
container_title | Applied numerical mathematics |
container_volume | 105 |
creator | Rodrigo, C. Gaspar, F.J. Lisbona, F.J. |
description | A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness. |
doi_str_mv | 10.1016/j.apnum.2016.02.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816054821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927416300022</els_id><sourcerecordid>1816054821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siSc448kAwOqKCBV6gKz5TqX4pLGwU4q9d9jKDPT6dU970n3EHLLIGfA1P0uN0M_7fMihRyKHECdkRmrSp5JoeCczNKiyuqiFJfkKsYdAEgpYEbW654a2nlrOrr0U3AYqOlNd4wu0tYH6g8YOjMMrt_STeI-adx7P35giNT3dAzO9NupM4Fug2viNbloTRfx5m_Oyfvy6W3xkq3Wz6-Lx1VmecXGzAI0ZVUaWTcbKzZQl6JuoFRC8LblBluFynIUolUFyoYBl2hly5k1qrJ1xefk7nR3CP5rwjjqvYsWu8706KeoWcUUSFEVLKH8hNrgYwzY6iG4vQlHzUD_6NM7_atP_-jTUOikL7UeTi1MXxySFh2tw95i4wLaUTfe_dv_Bu4GeqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816054821</pqid></control><display><type>article</type><title>On a local Fourier analysis for overlapping block smoothers on triangular grids</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Rodrigo, C. ; Gaspar, F.J. ; Lisbona, F.J.</creator><creatorcontrib>Rodrigo, C. ; Gaspar, F.J. ; Lisbona, F.J.</creatorcontrib><description>A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2016.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Blocking ; Box-relaxation ; Convergence ; Discretization ; Finite element method ; Fourier analysis ; Local Fourier analysis ; Mathematical analysis ; Mathematical models ; Multigrid ; Nédélec ; Overlapping block smoothers ; Saddle point type problems ; Stokes ; Triangular grids ; Vanka smoothers</subject><ispartof>Applied numerical mathematics, 2016-07, Vol.105, p.96-111</ispartof><rights>2016 IMACS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</citedby><cites>FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927416300022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F.J.</creatorcontrib><creatorcontrib>Lisbona, F.J.</creatorcontrib><title>On a local Fourier analysis for overlapping block smoothers on triangular grids</title><title>Applied numerical mathematics</title><description>A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.</description><subject>Asymptotic properties</subject><subject>Blocking</subject><subject>Box-relaxation</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>Fourier analysis</subject><subject>Local Fourier analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multigrid</subject><subject>Nédélec</subject><subject>Overlapping block smoothers</subject><subject>Saddle point type problems</subject><subject>Stokes</subject><subject>Triangular grids</subject><subject>Vanka smoothers</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siSc448kAwOqKCBV6gKz5TqX4pLGwU4q9d9jKDPT6dU970n3EHLLIGfA1P0uN0M_7fMihRyKHECdkRmrSp5JoeCczNKiyuqiFJfkKsYdAEgpYEbW654a2nlrOrr0U3AYqOlNd4wu0tYH6g8YOjMMrt_STeI-adx7P35giNT3dAzO9NupM4Fug2viNbloTRfx5m_Oyfvy6W3xkq3Wz6-Lx1VmecXGzAI0ZVUaWTcbKzZQl6JuoFRC8LblBluFynIUolUFyoYBl2hly5k1qrJ1xefk7nR3CP5rwjjqvYsWu8706KeoWcUUSFEVLKH8hNrgYwzY6iG4vQlHzUD_6NM7_atP_-jTUOikL7UeTi1MXxySFh2tw95i4wLaUTfe_dv_Bu4GeqA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Rodrigo, C.</creator><creator>Gaspar, F.J.</creator><creator>Lisbona, F.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201607</creationdate><title>On a local Fourier analysis for overlapping block smoothers on triangular grids</title><author>Rodrigo, C. ; Gaspar, F.J. ; Lisbona, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Blocking</topic><topic>Box-relaxation</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>Fourier analysis</topic><topic>Local Fourier analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multigrid</topic><topic>Nédélec</topic><topic>Overlapping block smoothers</topic><topic>Saddle point type problems</topic><topic>Stokes</topic><topic>Triangular grids</topic><topic>Vanka smoothers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigo, C.</creatorcontrib><creatorcontrib>Gaspar, F.J.</creatorcontrib><creatorcontrib>Lisbona, F.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigo, C.</au><au>Gaspar, F.J.</au><au>Lisbona, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a local Fourier analysis for overlapping block smoothers on triangular grids</atitle><jtitle>Applied numerical mathematics</jtitle><date>2016-07</date><risdate>2016</risdate><volume>105</volume><spage>96</spage><epage>111</epage><pages>96-111</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>A general local Fourier analysis for overlapping block smoothers on triangular grids is presented. This analysis is explained in a general form for its application to problems with different discretizations. This tool is demonstrated for two different problems: a stabilized linear finite element discretization of Stokes equations and an edge-based discretization of the curl–curl operator by lowest-order Nédélec finite element method. In this latter, special Fourier modes have to be considered in order to perform the analysis. Numerical results comparing two- and three-grid convergence factors predicted by the local Fourier analysis to real asymptotic convergence factors are presented to confirm the predictions of the analysis and show their usefulness.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2016.02.006</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2016-07, Vol.105, p.96-111 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816054821 |
source | ScienceDirect Freedom Collection 2022-2024; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Asymptotic properties Blocking Box-relaxation Convergence Discretization Finite element method Fourier analysis Local Fourier analysis Mathematical analysis Mathematical models Multigrid Nédélec Overlapping block smoothers Saddle point type problems Stokes Triangular grids Vanka smoothers |
title | On a local Fourier analysis for overlapping block smoothers on triangular grids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20local%20Fourier%20analysis%20for%20overlapping%20block%20smoothers%20on%20triangular%20grids&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Rodrigo,%20C.&rft.date=2016-07&rft.volume=105&rft.spage=96&rft.epage=111&rft.pages=96-111&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2016.02.006&rft_dat=%3Cproquest_cross%3E1816054821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-c00d787a59dbc4b09749d076443ff3aef6e6c3e44f62e5d1035ec5f31ca68c983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816054821&rft_id=info:pmid/&rfr_iscdi=true |