Loading…
Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer
•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance...
Saved in:
Published in: | International journal of heat and mass transfer 2016-06, Vol.97, p.653-661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23 |
container_end_page | 661 |
container_issue | |
container_start_page | 653 |
container_title | International journal of heat and mass transfer |
container_volume | 97 |
creator | Wenzel, E.A. Kulacki, F.A. Garrick, S.C. |
description | •We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers.
Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2016.02.067 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816055679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931015303598</els_id><sourcerecordid>1816055679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_-NhLgu3EdnIDVTxVxAW4Wq69AVeJ3doJEjf-gT_kS0hUblw47WNmZ3cHoQUlOSVUnG9yt3kD3Xc6pT5qnxqIORuRnLCcCHmAZrSSdcZoVR-iGSFUZnVByTE6SWkzlaQUM_TyECy0zr9i7S1Orhta3bvgcWhw63aDs9-fX_sE2xi2LfR4WjtNOI81bnXnvI54HQZvdfwYGx8QT9FRo9sEZ79xjp6vr56Wt9nq8eZuebnKTCF5n1nBtWCWGGBaGKqrpgJeFlaKWqw5Y1xSLUhFwZamMA0haw1UclZKwlnVsGKOFnvdbQy7AVKvOpcMtK32EIakaEUF4VzIeqRe7KkmhpQiNGobXTderChRk6Vqo_5aqiZLFWFqtHSUuN9LwPjSuxvRZBx4A9ZFML2ywf1f7AcxiI4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816055679</pqid></control><display><type>article</type><title>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wenzel, E.A. ; Kulacki, F.A. ; Garrick, S.C.</creator><creatorcontrib>Wenzel, E.A. ; Kulacki, F.A. ; Garrick, S.C.</creatorcontrib><description>•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers.
Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2016.02.067</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymmetry ; Boundary layer ; Computational fluid dynamics ; Computer simulation ; Droplet heating ; Droplets ; Fluid flow ; Heating ; Magnus force ; Multiphase ; Navier-Stokes equations</subject><ispartof>International journal of heat and mass transfer, 2016-06, Vol.97, p.653-661</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</citedby><cites>FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wenzel, E.A.</creatorcontrib><creatorcontrib>Kulacki, F.A.</creatorcontrib><creatorcontrib>Garrick, S.C.</creatorcontrib><title>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</title><title>International journal of heat and mass transfer</title><description>•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers.
Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.</description><subject>Asymmetry</subject><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Droplet heating</subject><subject>Droplets</subject><subject>Fluid flow</subject><subject>Heating</subject><subject>Magnus force</subject><subject>Multiphase</subject><subject>Navier-Stokes equations</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_-NhLgu3EdnIDVTxVxAW4Wq69AVeJ3doJEjf-gT_kS0hUblw47WNmZ3cHoQUlOSVUnG9yt3kD3Xc6pT5qnxqIORuRnLCcCHmAZrSSdcZoVR-iGSFUZnVByTE6SWkzlaQUM_TyECy0zr9i7S1Orhta3bvgcWhw63aDs9-fX_sE2xi2LfR4WjtNOI81bnXnvI54HQZvdfwYGx8QT9FRo9sEZ79xjp6vr56Wt9nq8eZuebnKTCF5n1nBtWCWGGBaGKqrpgJeFlaKWqw5Y1xSLUhFwZamMA0haw1UclZKwlnVsGKOFnvdbQy7AVKvOpcMtK32EIakaEUF4VzIeqRe7KkmhpQiNGobXTderChRk6Vqo_5aqiZLFWFqtHSUuN9LwPjSuxvRZBx4A9ZFML2ywf1f7AcxiI4M</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Wenzel, E.A.</creator><creator>Kulacki, F.A.</creator><creator>Garrick, S.C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</title><author>Wenzel, E.A. ; Kulacki, F.A. ; Garrick, S.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Droplet heating</topic><topic>Droplets</topic><topic>Fluid flow</topic><topic>Heating</topic><topic>Magnus force</topic><topic>Multiphase</topic><topic>Navier-Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenzel, E.A.</creatorcontrib><creatorcontrib>Kulacki, F.A.</creatorcontrib><creatorcontrib>Garrick, S.C.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenzel, E.A.</au><au>Kulacki, F.A.</au><au>Garrick, S.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2016-06</date><risdate>2016</risdate><volume>97</volume><spage>653</spage><epage>661</epage><pages>653-661</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers.
Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2016.02.067</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2016-06, Vol.97, p.653-661 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816055679 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Asymmetry Boundary layer Computational fluid dynamics Computer simulation Droplet heating Droplets Fluid flow Heating Magnus force Multiphase Navier-Stokes equations |
title | Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20liquid%E2%80%93liquid%20droplet%20heating%20in%20a%20laminar%20boundary%20layer&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wenzel,%20E.A.&rft.date=2016-06&rft.volume=97&rft.spage=653&rft.epage=661&rft.pages=653-661&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2016.02.067&rft_dat=%3Cproquest_cross%3E1816055679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816055679&rft_id=info:pmid/&rfr_iscdi=true |