Loading…

Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer

•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2016-06, Vol.97, p.653-661
Main Authors: Wenzel, E.A., Kulacki, F.A., Garrick, S.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23
cites cdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23
container_end_page 661
container_issue
container_start_page 653
container_title International journal of heat and mass transfer
container_volume 97
creator Wenzel, E.A.
Kulacki, F.A.
Garrick, S.C.
description •We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers. Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.
doi_str_mv 10.1016/j.ijheatmasstransfer.2016.02.067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816055679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931015303598</els_id><sourcerecordid>1816055679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_-NhLgu3EdnIDVTxVxAW4Wq69AVeJ3doJEjf-gT_kS0hUblw47WNmZ3cHoQUlOSVUnG9yt3kD3Xc6pT5qnxqIORuRnLCcCHmAZrSSdcZoVR-iGSFUZnVByTE6SWkzlaQUM_TyECy0zr9i7S1Orhta3bvgcWhw63aDs9-fX_sE2xi2LfR4WjtNOI81bnXnvI54HQZvdfwYGx8QT9FRo9sEZ79xjp6vr56Wt9nq8eZuebnKTCF5n1nBtWCWGGBaGKqrpgJeFlaKWqw5Y1xSLUhFwZamMA0haw1UclZKwlnVsGKOFnvdbQy7AVKvOpcMtK32EIakaEUF4VzIeqRe7KkmhpQiNGobXTderChRk6Vqo_5aqiZLFWFqtHSUuN9LwPjSuxvRZBx4A9ZFML2ywf1f7AcxiI4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816055679</pqid></control><display><type>article</type><title>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wenzel, E.A. ; Kulacki, F.A. ; Garrick, S.C.</creator><creatorcontrib>Wenzel, E.A. ; Kulacki, F.A. ; Garrick, S.C.</creatorcontrib><description>•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers. Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2016.02.067</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymmetry ; Boundary layer ; Computational fluid dynamics ; Computer simulation ; Droplet heating ; Droplets ; Fluid flow ; Heating ; Magnus force ; Multiphase ; Navier-Stokes equations</subject><ispartof>International journal of heat and mass transfer, 2016-06, Vol.97, p.653-661</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</citedby><cites>FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wenzel, E.A.</creatorcontrib><creatorcontrib>Kulacki, F.A.</creatorcontrib><creatorcontrib>Garrick, S.C.</creatorcontrib><title>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</title><title>International journal of heat and mass transfer</title><description>•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers. Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.</description><subject>Asymmetry</subject><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Droplet heating</subject><subject>Droplets</subject><subject>Fluid flow</subject><subject>Heating</subject><subject>Magnus force</subject><subject>Multiphase</subject><subject>Navier-Stokes equations</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_-NhLgu3EdnIDVTxVxAW4Wq69AVeJ3doJEjf-gT_kS0hUblw47WNmZ3cHoQUlOSVUnG9yt3kD3Xc6pT5qnxqIORuRnLCcCHmAZrSSdcZoVR-iGSFUZnVByTE6SWkzlaQUM_TyECy0zr9i7S1Orhta3bvgcWhw63aDs9-fX_sE2xi2LfR4WjtNOI81bnXnvI54HQZvdfwYGx8QT9FRo9sEZ79xjp6vr56Wt9nq8eZuebnKTCF5n1nBtWCWGGBaGKqrpgJeFlaKWqw5Y1xSLUhFwZamMA0haw1UclZKwlnVsGKOFnvdbQy7AVKvOpcMtK32EIakaEUF4VzIeqRe7KkmhpQiNGobXTderChRk6Vqo_5aqiZLFWFqtHSUuN9LwPjSuxvRZBx4A9ZFML2ywf1f7AcxiI4M</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Wenzel, E.A.</creator><creator>Kulacki, F.A.</creator><creator>Garrick, S.C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</title><author>Wenzel, E.A. ; Kulacki, F.A. ; Garrick, S.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Droplet heating</topic><topic>Droplets</topic><topic>Fluid flow</topic><topic>Heating</topic><topic>Magnus force</topic><topic>Multiphase</topic><topic>Navier-Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenzel, E.A.</creatorcontrib><creatorcontrib>Kulacki, F.A.</creatorcontrib><creatorcontrib>Garrick, S.C.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenzel, E.A.</au><au>Kulacki, F.A.</au><au>Garrick, S.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2016-06</date><risdate>2016</risdate><volume>97</volume><spage>653</spage><epage>661</epage><pages>653-661</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We model heat transfer to a small liquid droplet in a developing boundary layer.•We consider the influences of Prandtl, Weber, and Reynolds numbers heat transfer.•The Magnus force separates the droplets from the surface and reduces heating.•The droplet Prandtl number influences temperature variance, but not the mean.•Convection within the droplets increases with Prandtl and Reynolds numbers. Asymmetric liquid–liquid droplet heating mechanisms differ from the more commonly studied and better understood symmetric liquid–gas mechanisms. In this work, we simulate two-dimensional low Weber number droplet heating in developing low Reynolds number liquid boundary layers. Of particular interest are the influences of Weber, Prandtl, and Reynolds number magnitudes on the system evolution. We perform simulations with a coupled Eulerian–Lagrangian interface capturing methodology – the Lagrangian volume of fluid – alongside an Eulerian solver for the Navier–Stokes equations that provides the spatial and temporal evolution of the temperature and velocity fields for the droplet and the surrounding fluid. Our results show droplet rolling induced by the velocity boundary layer modifies the temperature field in and around the droplet. Conduction negates the thermal influence of rolling in low Prandtl number droplets, but modifies the continuous phase temperature field. The Magnus force separates the droplets from the heated surface, decreasing their heating rate. These results establish the fundamentals of asymmetric liquid–liquid droplet heating in developing boundary layers: it is necessary to include the Magnus force in physically representative near-wall droplet heating models, and resolution of near-droplet temperature gradients may be necessary in situations with temperature dependent interface processes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2016.02.067</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2016-06, Vol.97, p.653-661
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1816055679
source ScienceDirect Freedom Collection 2022-2024
subjects Asymmetry
Boundary layer
Computational fluid dynamics
Computer simulation
Droplet heating
Droplets
Fluid flow
Heating
Magnus force
Multiphase
Navier-Stokes equations
title Modeling and simulation of liquid–liquid droplet heating in a laminar boundary layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20liquid%E2%80%93liquid%20droplet%20heating%20in%20a%20laminar%20boundary%20layer&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wenzel,%20E.A.&rft.date=2016-06&rft.volume=97&rft.spage=653&rft.epage=661&rft.pages=653-661&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2016.02.067&rft_dat=%3Cproquest_cross%3E1816055679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-d65a62d0ce2a6c1a8f8e543d7696b522571a6081ed4c3cf00bae1752470528f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816055679&rft_id=info:pmid/&rfr_iscdi=true