Loading…

Impact of silicon doping on the magnetocaloric effect of MnFeP0.35As0.65 powder

The magnetocaloric effect in the MnFeP0.35As0.65−xSix intermetallic compounds, prepared via solid-state sintering was studied. Adiabatic temperature and magnetic entropy changes were obtained in order to characterize these compounds. The substitution of silicon for arsenic leads to a significant enh...

Full description

Saved in:
Bibliographic Details
Published in:Solid state sciences 2016-06, Vol.56, p.23-28
Main Authors: Wlodarczyk, P., Hawelek, L., Kowalczyk, M., Kaminska, M., Zackiewicz, P., Polak, M., Hreczka, M., Kolano-Burian, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33
cites cdi_FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33
container_end_page 28
container_issue
container_start_page 23
container_title Solid state sciences
container_volume 56
creator Wlodarczyk, P.
Hawelek, L.
Kowalczyk, M.
Kaminska, M.
Zackiewicz, P.
Polak, M.
Hreczka, M.
Kolano-Burian, A.
description The magnetocaloric effect in the MnFeP0.35As0.65−xSix intermetallic compounds, prepared via solid-state sintering was studied. Adiabatic temperature and magnetic entropy changes were obtained in order to characterize these compounds. The substitution of silicon for arsenic leads to a significant enhancement of the magnetocaloric effect for silicon amount x = 0.11. The adiabatic temperature change increased from 2.3 to 3.3 K for the magnetic field change from 0 to 1.7 T. This improvement has been correlated with the increase of crystalline cell volume and change of lattice constants. Additionally, the structure of pure MnFeP0.33As0.67 has been modeled in order to check the spin alignment within the framework of ferromagnetic collinear model. [Display omitted] •MnFeP0.35As0.65−xSix series of compounds has been obtained by solid-state sintering.•It was found that silicon improves adiabatic temperature change as well as magnetic entropy change.•Significant increase of ΔTad has been found when silicon content was improved to x = 0.11.•The highest ΔS=11 J/kg*K at B = 2T and ΔTad=3.2 K at B = 1.7T were estimated for the sample with Si amount x = 0.11.•The ΔTad has been found to be 0.6 K higher during cooling regime due to the unique latent heat of sample (for x = 0.11).
doi_str_mv 10.1016/j.solidstatesciences.2016.04.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816056323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255816301303</els_id><sourcerecordid>1816056323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhiMEEqXwHzJ2STjHH0k2qopCEagMMFuJfS6ukjjYKYh_T6p0Y2G6V7pHr-6eKFoQSAkQcbtPg2usDkM1YFAWO4UhzcZNCiwFoGfRjBQ5TSgU_HzMWUmTjPPiMroKYQ8AQuRsFm03bV-pIXYmDraxynWxdr3tdvGYhg-M22rX4eBU1ThvVYzG4IS_dGt8hZTyZYBU8Lh33xr9dXRhqibgzWnOo_f1_dvqMXnePmxWy-dEMUaGhAkDqCkvy9KQ8URgWHJdi5wSpg2UoKkulNB5ruu61sBULlReC8bryuia0nm0mHp77z4PGAbZ2qCwaaoO3SFIUhABXNDsiN5NqPIuBI9G9t62lf-RBOTRpdzLvy7l0aUEJkeXY8XTVIHjS18WvTxh2vpRh9TO_r_sF1m6iO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816056323</pqid></control><display><type>article</type><title>Impact of silicon doping on the magnetocaloric effect of MnFeP0.35As0.65 powder</title><source>ScienceDirect Journals</source><creator>Wlodarczyk, P. ; Hawelek, L. ; Kowalczyk, M. ; Kaminska, M. ; Zackiewicz, P. ; Polak, M. ; Hreczka, M. ; Kolano-Burian, A.</creator><creatorcontrib>Wlodarczyk, P. ; Hawelek, L. ; Kowalczyk, M. ; Kaminska, M. ; Zackiewicz, P. ; Polak, M. ; Hreczka, M. ; Kolano-Burian, A.</creatorcontrib><description>The magnetocaloric effect in the MnFeP0.35As0.65−xSix intermetallic compounds, prepared via solid-state sintering was studied. Adiabatic temperature and magnetic entropy changes were obtained in order to characterize these compounds. The substitution of silicon for arsenic leads to a significant enhancement of the magnetocaloric effect for silicon amount x = 0.11. The adiabatic temperature change increased from 2.3 to 3.3 K for the magnetic field change from 0 to 1.7 T. This improvement has been correlated with the increase of crystalline cell volume and change of lattice constants. Additionally, the structure of pure MnFeP0.33As0.67 has been modeled in order to check the spin alignment within the framework of ferromagnetic collinear model. [Display omitted] •MnFeP0.35As0.65−xSix series of compounds has been obtained by solid-state sintering.•It was found that silicon improves adiabatic temperature change as well as magnetic entropy change.•Significant increase of ΔTad has been found when silicon content was improved to x = 0.11.•The highest ΔS=11 J/kg*K at B = 2T and ΔTad=3.2 K at B = 1.7T were estimated for the sample with Si amount x = 0.11.•The ΔTad has been found to be 0.6 K higher during cooling regime due to the unique latent heat of sample (for x = 0.11).</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/j.solidstatesciences.2016.04.003</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Adiabatic flow ; Correlation ; Crystal structure ; Entropy ; Fe2P-type compounds ; Ferromagnetism ; Lattice parameters ; Magnetic fields ; Magnetic properties ; Magnetocaloric effect ; MnFePAs ; Silicon</subject><ispartof>Solid state sciences, 2016-06, Vol.56, p.23-28</ispartof><rights>2016 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33</citedby><cites>FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wlodarczyk, P.</creatorcontrib><creatorcontrib>Hawelek, L.</creatorcontrib><creatorcontrib>Kowalczyk, M.</creatorcontrib><creatorcontrib>Kaminska, M.</creatorcontrib><creatorcontrib>Zackiewicz, P.</creatorcontrib><creatorcontrib>Polak, M.</creatorcontrib><creatorcontrib>Hreczka, M.</creatorcontrib><creatorcontrib>Kolano-Burian, A.</creatorcontrib><title>Impact of silicon doping on the magnetocaloric effect of MnFeP0.35As0.65 powder</title><title>Solid state sciences</title><description>The magnetocaloric effect in the MnFeP0.35As0.65−xSix intermetallic compounds, prepared via solid-state sintering was studied. Adiabatic temperature and magnetic entropy changes were obtained in order to characterize these compounds. The substitution of silicon for arsenic leads to a significant enhancement of the magnetocaloric effect for silicon amount x = 0.11. The adiabatic temperature change increased from 2.3 to 3.3 K for the magnetic field change from 0 to 1.7 T. This improvement has been correlated with the increase of crystalline cell volume and change of lattice constants. Additionally, the structure of pure MnFeP0.33As0.67 has been modeled in order to check the spin alignment within the framework of ferromagnetic collinear model. [Display omitted] •MnFeP0.35As0.65−xSix series of compounds has been obtained by solid-state sintering.•It was found that silicon improves adiabatic temperature change as well as magnetic entropy change.•Significant increase of ΔTad has been found when silicon content was improved to x = 0.11.•The highest ΔS=11 J/kg*K at B = 2T and ΔTad=3.2 K at B = 1.7T were estimated for the sample with Si amount x = 0.11.•The ΔTad has been found to be 0.6 K higher during cooling regime due to the unique latent heat of sample (for x = 0.11).</description><subject>Adiabatic flow</subject><subject>Correlation</subject><subject>Crystal structure</subject><subject>Entropy</subject><subject>Fe2P-type compounds</subject><subject>Ferromagnetism</subject><subject>Lattice parameters</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetocaloric effect</subject><subject>MnFePAs</subject><subject>Silicon</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhiMEEqXwHzJ2STjHH0k2qopCEagMMFuJfS6ukjjYKYh_T6p0Y2G6V7pHr-6eKFoQSAkQcbtPg2usDkM1YFAWO4UhzcZNCiwFoGfRjBQ5TSgU_HzMWUmTjPPiMroKYQ8AQuRsFm03bV-pIXYmDraxynWxdr3tdvGYhg-M22rX4eBU1ThvVYzG4IS_dGt8hZTyZYBU8Lh33xr9dXRhqibgzWnOo_f1_dvqMXnePmxWy-dEMUaGhAkDqCkvy9KQ8URgWHJdi5wSpg2UoKkulNB5ruu61sBULlReC8bryuia0nm0mHp77z4PGAbZ2qCwaaoO3SFIUhABXNDsiN5NqPIuBI9G9t62lf-RBOTRpdzLvy7l0aUEJkeXY8XTVIHjS18WvTxh2vpRh9TO_r_sF1m6iO0</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Wlodarczyk, P.</creator><creator>Hawelek, L.</creator><creator>Kowalczyk, M.</creator><creator>Kaminska, M.</creator><creator>Zackiewicz, P.</creator><creator>Polak, M.</creator><creator>Hreczka, M.</creator><creator>Kolano-Burian, A.</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Impact of silicon doping on the magnetocaloric effect of MnFeP0.35As0.65 powder</title><author>Wlodarczyk, P. ; Hawelek, L. ; Kowalczyk, M. ; Kaminska, M. ; Zackiewicz, P. ; Polak, M. ; Hreczka, M. ; Kolano-Burian, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Correlation</topic><topic>Crystal structure</topic><topic>Entropy</topic><topic>Fe2P-type compounds</topic><topic>Ferromagnetism</topic><topic>Lattice parameters</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetocaloric effect</topic><topic>MnFePAs</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wlodarczyk, P.</creatorcontrib><creatorcontrib>Hawelek, L.</creatorcontrib><creatorcontrib>Kowalczyk, M.</creatorcontrib><creatorcontrib>Kaminska, M.</creatorcontrib><creatorcontrib>Zackiewicz, P.</creatorcontrib><creatorcontrib>Polak, M.</creatorcontrib><creatorcontrib>Hreczka, M.</creatorcontrib><creatorcontrib>Kolano-Burian, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wlodarczyk, P.</au><au>Hawelek, L.</au><au>Kowalczyk, M.</au><au>Kaminska, M.</au><au>Zackiewicz, P.</au><au>Polak, M.</au><au>Hreczka, M.</au><au>Kolano-Burian, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of silicon doping on the magnetocaloric effect of MnFeP0.35As0.65 powder</atitle><jtitle>Solid state sciences</jtitle><date>2016-06</date><risdate>2016</risdate><volume>56</volume><spage>23</spage><epage>28</epage><pages>23-28</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>The magnetocaloric effect in the MnFeP0.35As0.65−xSix intermetallic compounds, prepared via solid-state sintering was studied. Adiabatic temperature and magnetic entropy changes were obtained in order to characterize these compounds. The substitution of silicon for arsenic leads to a significant enhancement of the magnetocaloric effect for silicon amount x = 0.11. The adiabatic temperature change increased from 2.3 to 3.3 K for the magnetic field change from 0 to 1.7 T. This improvement has been correlated with the increase of crystalline cell volume and change of lattice constants. Additionally, the structure of pure MnFeP0.33As0.67 has been modeled in order to check the spin alignment within the framework of ferromagnetic collinear model. [Display omitted] •MnFeP0.35As0.65−xSix series of compounds has been obtained by solid-state sintering.•It was found that silicon improves adiabatic temperature change as well as magnetic entropy change.•Significant increase of ΔTad has been found when silicon content was improved to x = 0.11.•The highest ΔS=11 J/kg*K at B = 2T and ΔTad=3.2 K at B = 1.7T were estimated for the sample with Si amount x = 0.11.•The ΔTad has been found to be 0.6 K higher during cooling regime due to the unique latent heat of sample (for x = 0.11).</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.solidstatesciences.2016.04.003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1293-2558
ispartof Solid state sciences, 2016-06, Vol.56, p.23-28
issn 1293-2558
1873-3085
language eng
recordid cdi_proquest_miscellaneous_1816056323
source ScienceDirect Journals
subjects Adiabatic flow
Correlation
Crystal structure
Entropy
Fe2P-type compounds
Ferromagnetism
Lattice parameters
Magnetic fields
Magnetic properties
Magnetocaloric effect
MnFePAs
Silicon
title Impact of silicon doping on the magnetocaloric effect of MnFeP0.35As0.65 powder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20silicon%20doping%20on%20the%20magnetocaloric%20effect%20of%20MnFeP0.35As0.65%20powder&rft.jtitle=Solid%20state%20sciences&rft.au=Wlodarczyk,%20P.&rft.date=2016-06&rft.volume=56&rft.spage=23&rft.epage=28&rft.pages=23-28&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/j.solidstatesciences.2016.04.003&rft_dat=%3Cproquest_cross%3E1816056323%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-46f0ed35999f130804e95db67314df090d3d8c6d77dbbbd04c76c7b645bafdb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816056323&rft_id=info:pmid/&rfr_iscdi=true