Loading…
Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry
In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by rem...
Saved in:
Published in: | IEEE transactions on electron devices 2016-01, Vol.63 (1), p.265-271 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73 |
container_end_page | 271 |
container_issue | 1 |
container_start_page | 265 |
container_title | IEEE transactions on electron devices |
container_volume | 63 |
creator | Ritzenthaler, Romain Schram, Tom Spessot, Alessio Caillat, Christian Moonju Cho Simoen, Eddy Aoulaiche, Marc Albert, Johan Soon-Aik Chew Noh, Kyoung Bong Yunik Son Mitard, Jerome Mocuta, Anda Horiguchi, Naoto Fazan, Pierre Thean, Aaron Voon-Yew |
description | In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&GR baseline, validating the integration flow. |
doi_str_mv | 10.1109/TED.2015.2501721 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816064715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7348710</ieee_id><sourcerecordid>1816064715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqWwI7F4ZElrJ34kbFWfSC2VaPfIja_bQF7YrlAXfjspqZiu7tH3neEg9EjJgFKSDLfTySAklA9CTqgM6RXqUc5lkAgmrlGPEBoHSRRHt-jOuY_2FYyFPfQzyY05uryusKo0nisP-B2aQmVQQuVf8Ai_wfdfHsxy6zxe5PtDgD_xcAVeFZ0xXq03-LXysLfKn7s22aH18ebYNBacy6t9By6gtT0euVNZgrene3RjVOHg4XL7aDubbseLYLmev45HyyCLhPCB2DFtqGSCR1oJoo0WoJkUwMBwYiS0URgxrnUmBU-yMOE7xjiVUsZcy6iPnrvaxtZfR3A-LXOXQVGoCuqjS2lMBRFMUt6ipEMzWztnwaSNzUtlTykl6XnptF06PS-dXpZuladOyQHgH5cRiyUl0S96Rnkd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816064715</pqid></control><display><type>article</type><title>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</title><source>IEEE Xplore (Online service)</source><creator>Ritzenthaler, Romain ; Schram, Tom ; Spessot, Alessio ; Caillat, Christian ; Moonju Cho ; Simoen, Eddy ; Aoulaiche, Marc ; Albert, Johan ; Soon-Aik Chew ; Noh, Kyoung Bong ; Yunik Son ; Mitard, Jerome ; Mocuta, Anda ; Horiguchi, Naoto ; Fazan, Pierre ; Thean, Aaron Voon-Yew</creator><creatorcontrib>Ritzenthaler, Romain ; Schram, Tom ; Spessot, Alessio ; Caillat, Christian ; Moonju Cho ; Simoen, Eddy ; Aoulaiche, Marc ; Albert, Johan ; Soon-Aik Chew ; Noh, Kyoung Bong ; Yunik Son ; Mitard, Jerome ; Mocuta, Anda ; Horiguchi, Naoto ; Fazan, Pierre ; Thean, Aaron Voon-Yew</creatorcontrib><description>In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&GR baseline, validating the integration flow.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2015.2501721</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aluminum oxide ; Al₂O₃ capping layers ; Annealing ; Asymmetry ; CMOS ; CMOS integrated circuits ; CMOS process integration ; Compatibility ; Devices ; Diffusion ; diffusion and gate replacement (D#x0026;GR) ; dynamic random access memory (DRAM) periphery transistors ; Gates ; High K dielectric materials ; high-k metal gate (HKMG) ; La capping layers ; Logic gates ; Mg capping layers ; MOS devices ; MOSFET fabrication ; Work functions</subject><ispartof>IEEE transactions on electron devices, 2016-01, Vol.63 (1), p.265-271</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</citedby><cites>FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7348710$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ritzenthaler, Romain</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Spessot, Alessio</creatorcontrib><creatorcontrib>Caillat, Christian</creatorcontrib><creatorcontrib>Moonju Cho</creatorcontrib><creatorcontrib>Simoen, Eddy</creatorcontrib><creatorcontrib>Aoulaiche, Marc</creatorcontrib><creatorcontrib>Albert, Johan</creatorcontrib><creatorcontrib>Soon-Aik Chew</creatorcontrib><creatorcontrib>Noh, Kyoung Bong</creatorcontrib><creatorcontrib>Yunik Son</creatorcontrib><creatorcontrib>Mitard, Jerome</creatorcontrib><creatorcontrib>Mocuta, Anda</creatorcontrib><creatorcontrib>Horiguchi, Naoto</creatorcontrib><creatorcontrib>Fazan, Pierre</creatorcontrib><creatorcontrib>Thean, Aaron Voon-Yew</creatorcontrib><title>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&GR baseline, validating the integration flow.</description><subject>Aluminum oxide</subject><subject>Al₂O₃ capping layers</subject><subject>Annealing</subject><subject>Asymmetry</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>CMOS process integration</subject><subject>Compatibility</subject><subject>Devices</subject><subject>Diffusion</subject><subject>diffusion and gate replacement (D#x0026;GR)</subject><subject>dynamic random access memory (DRAM) periphery transistors</subject><subject>Gates</subject><subject>High K dielectric materials</subject><subject>high-k metal gate (HKMG)</subject><subject>La capping layers</subject><subject>Logic gates</subject><subject>Mg capping layers</subject><subject>MOS devices</subject><subject>MOSFET fabrication</subject><subject>Work functions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqWwI7F4ZElrJ34kbFWfSC2VaPfIja_bQF7YrlAXfjspqZiu7tH3neEg9EjJgFKSDLfTySAklA9CTqgM6RXqUc5lkAgmrlGPEBoHSRRHt-jOuY_2FYyFPfQzyY05uryusKo0nisP-B2aQmVQQuVf8Ai_wfdfHsxy6zxe5PtDgD_xcAVeFZ0xXq03-LXysLfKn7s22aH18ebYNBacy6t9By6gtT0euVNZgrene3RjVOHg4XL7aDubbseLYLmev45HyyCLhPCB2DFtqGSCR1oJoo0WoJkUwMBwYiS0URgxrnUmBU-yMOE7xjiVUsZcy6iPnrvaxtZfR3A-LXOXQVGoCuqjS2lMBRFMUt6ipEMzWztnwaSNzUtlTykl6XnptF06PS-dXpZuladOyQHgH5cRiyUl0S96Rnkd</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ritzenthaler, Romain</creator><creator>Schram, Tom</creator><creator>Spessot, Alessio</creator><creator>Caillat, Christian</creator><creator>Moonju Cho</creator><creator>Simoen, Eddy</creator><creator>Aoulaiche, Marc</creator><creator>Albert, Johan</creator><creator>Soon-Aik Chew</creator><creator>Noh, Kyoung Bong</creator><creator>Yunik Son</creator><creator>Mitard, Jerome</creator><creator>Mocuta, Anda</creator><creator>Horiguchi, Naoto</creator><creator>Fazan, Pierre</creator><creator>Thean, Aaron Voon-Yew</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</title><author>Ritzenthaler, Romain ; Schram, Tom ; Spessot, Alessio ; Caillat, Christian ; Moonju Cho ; Simoen, Eddy ; Aoulaiche, Marc ; Albert, Johan ; Soon-Aik Chew ; Noh, Kyoung Bong ; Yunik Son ; Mitard, Jerome ; Mocuta, Anda ; Horiguchi, Naoto ; Fazan, Pierre ; Thean, Aaron Voon-Yew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Al₂O₃ capping layers</topic><topic>Annealing</topic><topic>Asymmetry</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>CMOS process integration</topic><topic>Compatibility</topic><topic>Devices</topic><topic>Diffusion</topic><topic>diffusion and gate replacement (D#x0026;GR)</topic><topic>dynamic random access memory (DRAM) periphery transistors</topic><topic>Gates</topic><topic>High K dielectric materials</topic><topic>high-k metal gate (HKMG)</topic><topic>La capping layers</topic><topic>Logic gates</topic><topic>Mg capping layers</topic><topic>MOS devices</topic><topic>MOSFET fabrication</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritzenthaler, Romain</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Spessot, Alessio</creatorcontrib><creatorcontrib>Caillat, Christian</creatorcontrib><creatorcontrib>Moonju Cho</creatorcontrib><creatorcontrib>Simoen, Eddy</creatorcontrib><creatorcontrib>Aoulaiche, Marc</creatorcontrib><creatorcontrib>Albert, Johan</creatorcontrib><creatorcontrib>Soon-Aik Chew</creatorcontrib><creatorcontrib>Noh, Kyoung Bong</creatorcontrib><creatorcontrib>Yunik Son</creatorcontrib><creatorcontrib>Mitard, Jerome</creatorcontrib><creatorcontrib>Mocuta, Anda</creatorcontrib><creatorcontrib>Horiguchi, Naoto</creatorcontrib><creatorcontrib>Fazan, Pierre</creatorcontrib><creatorcontrib>Thean, Aaron Voon-Yew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritzenthaler, Romain</au><au>Schram, Tom</au><au>Spessot, Alessio</au><au>Caillat, Christian</au><au>Moonju Cho</au><au>Simoen, Eddy</au><au>Aoulaiche, Marc</au><au>Albert, Johan</au><au>Soon-Aik Chew</au><au>Noh, Kyoung Bong</au><au>Yunik Son</au><au>Mitard, Jerome</au><au>Mocuta, Anda</au><au>Horiguchi, Naoto</au><au>Fazan, Pierre</au><au>Thean, Aaron Voon-Yew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>63</volume><issue>1</issue><spage>265</spage><epage>271</epage><pages>265-271</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&GR baseline, validating the integration flow.</abstract><pub>IEEE</pub><doi>10.1109/TED.2015.2501721</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2016-01, Vol.63 (1), p.265-271 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816064715 |
source | IEEE Xplore (Online service) |
subjects | Aluminum oxide Al₂O₃ capping layers Annealing Asymmetry CMOS CMOS integrated circuits CMOS process integration Compatibility Devices Diffusion diffusion and gate replacement (D#x0026 GR) dynamic random access memory (DRAM) periphery transistors Gates High K dielectric materials high-k metal gate (HKMG) La capping layers Logic gates Mg capping layers MOS devices MOSFET fabrication Work functions |
title | Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20and%20Gate%20Replacement:%20A%20New%20Gate-First%20High-%20k%20/Metal%20Gate%20CMOS%20Integration%20Scheme%20Suppressing%20Gate%20Height%20Asymmetry&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ritzenthaler,%20Romain&rft.date=2016-01-01&rft.volume=63&rft.issue=1&rft.spage=265&rft.epage=271&rft.pages=265-271&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2015.2501721&rft_dat=%3Cproquest_cross%3E1816064715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816064715&rft_id=info:pmid/&rft_ieee_id=7348710&rfr_iscdi=true |