Loading…

Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry

In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by rem...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2016-01, Vol.63 (1), p.265-271
Main Authors: Ritzenthaler, Romain, Schram, Tom, Spessot, Alessio, Caillat, Christian, Moonju Cho, Simoen, Eddy, Aoulaiche, Marc, Albert, Johan, Soon-Aik Chew, Noh, Kyoung Bong, Yunik Son, Mitard, Jerome, Mocuta, Anda, Horiguchi, Naoto, Fazan, Pierre, Thean, Aaron Voon-Yew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73
cites cdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73
container_end_page 271
container_issue 1
container_start_page 265
container_title IEEE transactions on electron devices
container_volume 63
creator Ritzenthaler, Romain
Schram, Tom
Spessot, Alessio
Caillat, Christian
Moonju Cho
Simoen, Eddy
Aoulaiche, Marc
Albert, Johan
Soon-Aik Chew
Noh, Kyoung Bong
Yunik Son
Mitard, Jerome
Mocuta, Anda
Horiguchi, Naoto
Fazan, Pierre
Thean, Aaron Voon-Yew
description In this paper, a new scheme called diffusion and gate replacement (D&GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&GR baseline, validating the integration flow.
doi_str_mv 10.1109/TED.2015.2501721
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816064715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7348710</ieee_id><sourcerecordid>1816064715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqWwI7F4ZElrJ34kbFWfSC2VaPfIja_bQF7YrlAXfjspqZiu7tH3neEg9EjJgFKSDLfTySAklA9CTqgM6RXqUc5lkAgmrlGPEBoHSRRHt-jOuY_2FYyFPfQzyY05uryusKo0nisP-B2aQmVQQuVf8Ai_wfdfHsxy6zxe5PtDgD_xcAVeFZ0xXq03-LXysLfKn7s22aH18ebYNBacy6t9By6gtT0euVNZgrene3RjVOHg4XL7aDubbseLYLmev45HyyCLhPCB2DFtqGSCR1oJoo0WoJkUwMBwYiS0URgxrnUmBU-yMOE7xjiVUsZcy6iPnrvaxtZfR3A-LXOXQVGoCuqjS2lMBRFMUt6ipEMzWztnwaSNzUtlTykl6XnptF06PS-dXpZuladOyQHgH5cRiyUl0S96Rnkd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816064715</pqid></control><display><type>article</type><title>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</title><source>IEEE Xplore (Online service)</source><creator>Ritzenthaler, Romain ; Schram, Tom ; Spessot, Alessio ; Caillat, Christian ; Moonju Cho ; Simoen, Eddy ; Aoulaiche, Marc ; Albert, Johan ; Soon-Aik Chew ; Noh, Kyoung Bong ; Yunik Son ; Mitard, Jerome ; Mocuta, Anda ; Horiguchi, Naoto ; Fazan, Pierre ; Thean, Aaron Voon-Yew</creator><creatorcontrib>Ritzenthaler, Romain ; Schram, Tom ; Spessot, Alessio ; Caillat, Christian ; Moonju Cho ; Simoen, Eddy ; Aoulaiche, Marc ; Albert, Johan ; Soon-Aik Chew ; Noh, Kyoung Bong ; Yunik Son ; Mitard, Jerome ; Mocuta, Anda ; Horiguchi, Naoto ; Fazan, Pierre ; Thean, Aaron Voon-Yew</creatorcontrib><description>In this paper, a new scheme called diffusion and gate replacement (D&amp;GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&amp;GR baseline, validating the integration flow.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2015.2501721</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aluminum oxide ; Al₂O₃ capping layers ; Annealing ; Asymmetry ; CMOS ; CMOS integrated circuits ; CMOS process integration ; Compatibility ; Devices ; Diffusion ; diffusion and gate replacement (D#x0026;GR) ; dynamic random access memory (DRAM) periphery transistors ; Gates ; High K dielectric materials ; high-k metal gate (HKMG) ; La capping layers ; Logic gates ; Mg capping layers ; MOS devices ; MOSFET fabrication ; Work functions</subject><ispartof>IEEE transactions on electron devices, 2016-01, Vol.63 (1), p.265-271</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</citedby><cites>FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7348710$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ritzenthaler, Romain</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Spessot, Alessio</creatorcontrib><creatorcontrib>Caillat, Christian</creatorcontrib><creatorcontrib>Moonju Cho</creatorcontrib><creatorcontrib>Simoen, Eddy</creatorcontrib><creatorcontrib>Aoulaiche, Marc</creatorcontrib><creatorcontrib>Albert, Johan</creatorcontrib><creatorcontrib>Soon-Aik Chew</creatorcontrib><creatorcontrib>Noh, Kyoung Bong</creatorcontrib><creatorcontrib>Yunik Son</creatorcontrib><creatorcontrib>Mitard, Jerome</creatorcontrib><creatorcontrib>Mocuta, Anda</creatorcontrib><creatorcontrib>Horiguchi, Naoto</creatorcontrib><creatorcontrib>Fazan, Pierre</creatorcontrib><creatorcontrib>Thean, Aaron Voon-Yew</creatorcontrib><title>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a new scheme called diffusion and gate replacement (D&amp;GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&amp;GR baseline, validating the integration flow.</description><subject>Aluminum oxide</subject><subject>Al₂O₃ capping layers</subject><subject>Annealing</subject><subject>Asymmetry</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>CMOS process integration</subject><subject>Compatibility</subject><subject>Devices</subject><subject>Diffusion</subject><subject>diffusion and gate replacement (D#x0026;GR)</subject><subject>dynamic random access memory (DRAM) periphery transistors</subject><subject>Gates</subject><subject>High K dielectric materials</subject><subject>high-k metal gate (HKMG)</subject><subject>La capping layers</subject><subject>Logic gates</subject><subject>Mg capping layers</subject><subject>MOS devices</subject><subject>MOSFET fabrication</subject><subject>Work functions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqWwI7F4ZElrJ34kbFWfSC2VaPfIja_bQF7YrlAXfjspqZiu7tH3neEg9EjJgFKSDLfTySAklA9CTqgM6RXqUc5lkAgmrlGPEBoHSRRHt-jOuY_2FYyFPfQzyY05uryusKo0nisP-B2aQmVQQuVf8Ai_wfdfHsxy6zxe5PtDgD_xcAVeFZ0xXq03-LXysLfKn7s22aH18ebYNBacy6t9By6gtT0euVNZgrene3RjVOHg4XL7aDubbseLYLmev45HyyCLhPCB2DFtqGSCR1oJoo0WoJkUwMBwYiS0URgxrnUmBU-yMOE7xjiVUsZcy6iPnrvaxtZfR3A-LXOXQVGoCuqjS2lMBRFMUt6ipEMzWztnwaSNzUtlTykl6XnptF06PS-dXpZuladOyQHgH5cRiyUl0S96Rnkd</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ritzenthaler, Romain</creator><creator>Schram, Tom</creator><creator>Spessot, Alessio</creator><creator>Caillat, Christian</creator><creator>Moonju Cho</creator><creator>Simoen, Eddy</creator><creator>Aoulaiche, Marc</creator><creator>Albert, Johan</creator><creator>Soon-Aik Chew</creator><creator>Noh, Kyoung Bong</creator><creator>Yunik Son</creator><creator>Mitard, Jerome</creator><creator>Mocuta, Anda</creator><creator>Horiguchi, Naoto</creator><creator>Fazan, Pierre</creator><creator>Thean, Aaron Voon-Yew</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</title><author>Ritzenthaler, Romain ; Schram, Tom ; Spessot, Alessio ; Caillat, Christian ; Moonju Cho ; Simoen, Eddy ; Aoulaiche, Marc ; Albert, Johan ; Soon-Aik Chew ; Noh, Kyoung Bong ; Yunik Son ; Mitard, Jerome ; Mocuta, Anda ; Horiguchi, Naoto ; Fazan, Pierre ; Thean, Aaron Voon-Yew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Al₂O₃ capping layers</topic><topic>Annealing</topic><topic>Asymmetry</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>CMOS process integration</topic><topic>Compatibility</topic><topic>Devices</topic><topic>Diffusion</topic><topic>diffusion and gate replacement (D#x0026;GR)</topic><topic>dynamic random access memory (DRAM) periphery transistors</topic><topic>Gates</topic><topic>High K dielectric materials</topic><topic>high-k metal gate (HKMG)</topic><topic>La capping layers</topic><topic>Logic gates</topic><topic>Mg capping layers</topic><topic>MOS devices</topic><topic>MOSFET fabrication</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritzenthaler, Romain</creatorcontrib><creatorcontrib>Schram, Tom</creatorcontrib><creatorcontrib>Spessot, Alessio</creatorcontrib><creatorcontrib>Caillat, Christian</creatorcontrib><creatorcontrib>Moonju Cho</creatorcontrib><creatorcontrib>Simoen, Eddy</creatorcontrib><creatorcontrib>Aoulaiche, Marc</creatorcontrib><creatorcontrib>Albert, Johan</creatorcontrib><creatorcontrib>Soon-Aik Chew</creatorcontrib><creatorcontrib>Noh, Kyoung Bong</creatorcontrib><creatorcontrib>Yunik Son</creatorcontrib><creatorcontrib>Mitard, Jerome</creatorcontrib><creatorcontrib>Mocuta, Anda</creatorcontrib><creatorcontrib>Horiguchi, Naoto</creatorcontrib><creatorcontrib>Fazan, Pierre</creatorcontrib><creatorcontrib>Thean, Aaron Voon-Yew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritzenthaler, Romain</au><au>Schram, Tom</au><au>Spessot, Alessio</au><au>Caillat, Christian</au><au>Moonju Cho</au><au>Simoen, Eddy</au><au>Aoulaiche, Marc</au><au>Albert, Johan</au><au>Soon-Aik Chew</au><au>Noh, Kyoung Bong</au><au>Yunik Son</au><au>Mitard, Jerome</au><au>Mocuta, Anda</au><au>Horiguchi, Naoto</au><au>Fazan, Pierre</au><au>Thean, Aaron Voon-Yew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>63</volume><issue>1</issue><spage>265</spage><epage>271</epage><pages>265-271</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a new scheme called diffusion and gate replacement (D&amp;GR) metal-inserted polysilicon integration is demonstrated. The CMOS flow allows controlling the gate height asymmetry between the nMOS and the pMOS by driving the work function shifter directly into the high-k, and then by removing the dopant source (dummy doped metal gate) and depositing a fresh TiN metal gate. Although the integration flow is compatible with a standard 45-/28-nm technological node, it has been specifically designed to be compatible with dynamic random access memory peripheral applications or other emerging memories (embedded applications). A material down-selection is done (TiN/Mg/TiN gate-stack for nMOS and Al 2 O 3 capping layer for pMOS), and it is demonstrated that a process window exists and guarantees enough work function lowering without compromising the electrical parameters (electrical oxide thickness, mobility, subthreshold slope, and gate leakage). Regarding the CMOS integration, it is shown that an nMOS-first integration is preferable, and that there is no contamination issue of the pMOS work function shifter (in this case, Al 2 O 3 ) on the nMOS side. Finally, CMOS device performance is on par with the non-D&amp;GR baseline, validating the integration flow.</abstract><pub>IEEE</pub><doi>10.1109/TED.2015.2501721</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2016-01, Vol.63 (1), p.265-271
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_1816064715
source IEEE Xplore (Online service)
subjects Aluminum oxide
Al₂O₃ capping layers
Annealing
Asymmetry
CMOS
CMOS integrated circuits
CMOS process integration
Compatibility
Devices
Diffusion
diffusion and gate replacement (D#x0026
GR)
dynamic random access memory (DRAM) periphery transistors
Gates
High K dielectric materials
high-k metal gate (HKMG)
La capping layers
Logic gates
Mg capping layers
MOS devices
MOSFET fabrication
Work functions
title Diffusion and Gate Replacement: A New Gate-First High- k /Metal Gate CMOS Integration Scheme Suppressing Gate Height Asymmetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20and%20Gate%20Replacement:%20A%20New%20Gate-First%20High-%20k%20/Metal%20Gate%20CMOS%20Integration%20Scheme%20Suppressing%20Gate%20Height%20Asymmetry&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ritzenthaler,%20Romain&rft.date=2016-01-01&rft.volume=63&rft.issue=1&rft.spage=265&rft.epage=271&rft.pages=265-271&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2015.2501721&rft_dat=%3Cproquest_cross%3E1816064715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-6b4df174653da60dfd6ed476e4ef50f7e0df2345ddc7659c295b445177785d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816064715&rft_id=info:pmid/&rft_ieee_id=7348710&rfr_iscdi=true