Loading…
Active Object Localization with Deep Reinforcement Learning
We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2496 |
container_issue | |
container_start_page | 2488 |
container_title | |
container_volume | |
creator | Caicedo, Juan C. Lazebnik, Svetlana |
description | We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization. |
doi_str_mv | 10.1109/ICCV.2015.286 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816069133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7410643</ieee_id><sourcerecordid>1816069133</sourcerecordid><originalsourceid>FETCH-LOGICAL-i247t-35d1501455fe9b0cf706cde008b1a49eaa6dadb53c8e3bd02800585735e620593</originalsourceid><addsrcrecordid>eNotzLFLw0AUgPFTEGyro5NLRpfU9_LuLnc4lVi1ECiIuobL5UWvpElNUkX_egt1-pYfnxBXCHNEsLerLHubJ4Bqnhh9IqYodUqGLMKpmCRkIE4VyHMxHYYNANmDmoi7hR_DF0frcsN-jPLOuyb8ujF0bfQdxo_onnkXPXNo6673vOX2gNj1bWjfL8RZ7ZqBL_87E68Py5fsKc7Xj6tskcchkekYk6pQAUqlarYl-DoF7SsGMCU6adk5XbmqVOQNU1lBYgCUUSkp1gkoSzNxc_zu-u5zz8NYbMPguWlcy91-KNCgBm2R6ECvjzQwc7Hrw9b1P0UqEbQk-gOjtFN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1816069133</pqid></control><display><type>conference_proceeding</type><title>Active Object Localization with Deep Reinforcement Learning</title><source>IEEE Xplore All Conference Series</source><creator>Caicedo, Juan C. ; Lazebnik, Svetlana</creator><creatorcontrib>Caicedo, Juan C. ; Lazebnik, Svetlana</creatorcontrib><description>We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1467383910</identifier><identifier>EISBN: 9781467383912</identifier><identifier>DOI: 10.1109/ICCV.2015.286</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer vision ; Conferences ; History ; Image detection ; Learning ; Learning (artificial intelligence) ; Localization ; Position (location) ; Prediction algorithms ; Proposals ; Reinforcement ; Search problems ; Transformations ; Transforms</subject><ispartof>2015 IEEE International Conference on Computer Vision (ICCV), 2015, p.2488-2496</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7410643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7410643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caicedo, Juan C.</creatorcontrib><creatorcontrib>Lazebnik, Svetlana</creatorcontrib><title>Active Object Localization with Deep Reinforcement Learning</title><title>2015 IEEE International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>History</subject><subject>Image detection</subject><subject>Learning</subject><subject>Learning (artificial intelligence)</subject><subject>Localization</subject><subject>Position (location)</subject><subject>Prediction algorithms</subject><subject>Proposals</subject><subject>Reinforcement</subject><subject>Search problems</subject><subject>Transformations</subject><subject>Transforms</subject><issn>2380-7504</issn><isbn>1467383910</isbn><isbn>9781467383912</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzLFLw0AUgPFTEGyro5NLRpfU9_LuLnc4lVi1ECiIuobL5UWvpElNUkX_egt1-pYfnxBXCHNEsLerLHubJ4Bqnhh9IqYodUqGLMKpmCRkIE4VyHMxHYYNANmDmoi7hR_DF0frcsN-jPLOuyb8ujF0bfQdxo_onnkXPXNo6673vOX2gNj1bWjfL8RZ7ZqBL_87E68Py5fsKc7Xj6tskcchkekYk6pQAUqlarYl-DoF7SsGMCU6adk5XbmqVOQNU1lBYgCUUSkp1gkoSzNxc_zu-u5zz8NYbMPguWlcy91-KNCgBm2R6ECvjzQwc7Hrw9b1P0UqEbQk-gOjtFN5</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Caicedo, Juan C.</creator><creator>Lazebnik, Svetlana</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Active Object Localization with Deep Reinforcement Learning</title><author>Caicedo, Juan C. ; Lazebnik, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i247t-35d1501455fe9b0cf706cde008b1a49eaa6dadb53c8e3bd02800585735e620593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>History</topic><topic>Image detection</topic><topic>Learning</topic><topic>Learning (artificial intelligence)</topic><topic>Localization</topic><topic>Position (location)</topic><topic>Prediction algorithms</topic><topic>Proposals</topic><topic>Reinforcement</topic><topic>Search problems</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Caicedo, Juan C.</creatorcontrib><creatorcontrib>Lazebnik, Svetlana</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caicedo, Juan C.</au><au>Lazebnik, Svetlana</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Active Object Localization with Deep Reinforcement Learning</atitle><btitle>2015 IEEE International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2015-12-01</date><risdate>2015</risdate><spage>2488</spage><epage>2496</epage><pages>2488-2496</pages><eissn>2380-7504</eissn><eisbn>1467383910</eisbn><eisbn>9781467383912</eisbn><coden>IEEPAD</coden><abstract>We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2015.286</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2380-7504 |
ispartof | 2015 IEEE International Conference on Computer Vision (ICCV), 2015, p.2488-2496 |
issn | 2380-7504 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816069133 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Computer vision Conferences History Image detection Learning Learning (artificial intelligence) Localization Position (location) Prediction algorithms Proposals Reinforcement Search problems Transformations Transforms |
title | Active Object Localization with Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Active%20Object%20Localization%20with%20Deep%20Reinforcement%20Learning&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Caicedo,%20Juan%20C.&rft.date=2015-12-01&rft.spage=2488&rft.epage=2496&rft.pages=2488-2496&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2015.286&rft.eisbn=1467383910&rft.eisbn_list=9781467383912&rft_dat=%3Cproquest_CHZPO%3E1816069133%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i247t-35d1501455fe9b0cf706cde008b1a49eaa6dadb53c8e3bd02800585735e620593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816069133&rft_id=info:pmid/&rft_ieee_id=7410643&rfr_iscdi=true |