Loading…
Classification of Lung Sounds using Higher-Order Statistics: A divide-and-conquer approach
Highlights • A pattern recognition system to classify five lung sounds is proposed. • The system is based on HOS and on a divide-and-conquer approach. • The proposed approach uses Genetic Algorithms to dimensionality reduction, and k-Nearest Neighbor and Naive Bayes to recognize the signals. • The s...
Saved in:
Published in: | Computer methods and programs in biomedicine 2016-06, Vol.129, p.12-20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73 |
container_end_page | 20 |
container_issue | |
container_start_page | 12 |
container_title | Computer methods and programs in biomedicine |
container_volume | 129 |
creator | Naves, Raphael Barbosa, Bruno H.G Ferreiradanton@deg.ufla.br, Danton D |
description | Highlights • A pattern recognition system to classify five lung sounds is proposed. • The system is based on HOS and on a divide-and-conquer approach. • The proposed approach uses Genetic Algorithms to dimensionality reduction, and k-Nearest Neighbor and Naive Bayes to recognize the signals. • The system achieved a high classification accuracy and can be implemented in an embedded system. |
doi_str_mv | 10.1016/j.cmpb.2016.02.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816072019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260716301614</els_id><sourcerecordid>1790952072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotuWP8AB5cglqT_iOEEIqVpBi7RSD0svXCx_TFov2Xixk0r990y0pQcOwMlj-XnfseYdQt4yWjHKmotd5fYHW3GsK8orysQLsmKt4qWSjXxJVvjQlbyh6oSc5ryjlHIpm9fkhCva1oI1K_J9PZicQx-cmUIci9gXm3m8K7ZxHn0u5hzwch3u7iGVN8lDKrYTknkKLn8oLgsfHoKH0oy-dHH8OSNgDocUjbs_J696M2R483Sekdsvn7-tr8vNzdXX9eWmdLVSUylt3bfQcGZEVztDe1vbphYOaC0tt0b2THnorBW-tVIqQYWsQUre-0YIUOKMvD_6Ylv8QJ70PmQHw2BGiHPWrGU4ApxS929UdbSTHOn_QFsmBe_axZUfUZdizgl6fUhhb9KjZlQvSemdXpLSS1Kaco1Joejdk_9s9-CfJb-jQeDjEQCc3UOApLMLMDrwIYGbtI_h7_6f_pC7IYwY8_ADHiHv4pxGTEUznVGgt8uuLKuCnbFktfgFdVy4OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781532989</pqid></control><display><type>article</type><title>Classification of Lung Sounds using Higher-Order Statistics: A divide-and-conquer approach</title><source>Elsevier</source><creator>Naves, Raphael ; Barbosa, Bruno H.G ; Ferreiradanton@deg.ufla.br, Danton D</creator><creatorcontrib>Naves, Raphael ; Barbosa, Bruno H.G ; Ferreiradanton@deg.ufla.br, Danton D</creatorcontrib><description>Highlights • A pattern recognition system to classify five lung sounds is proposed. • The system is based on HOS and on a divide-and-conquer approach. • The proposed approach uses Genetic Algorithms to dimensionality reduction, and k-Nearest Neighbor and Naive Bayes to recognize the signals. • The system achieved a high classification accuracy and can be implemented in an embedded system.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2016.02.013</identifier><identifier>PMID: 27084316</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Acoustics ; Algorithms ; Bayes Theorem ; Classification ; Classifiers ; Feature extraction ; Genetic Algorithm ; Genetic algorithms ; Higher-order statistics ; Humans ; Internal Medicine ; Lung sounds ; Lungs ; Models, Statistical ; Other ; Pattern recognition ; Respiratory Sounds - classification ; Statistics ; Training</subject><ispartof>Computer methods and programs in biomedicine, 2016-06, Vol.129, p.12-20</ispartof><rights>2016 Elsevier Ireland Ltd</rights><rights>Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73</citedby><cites>FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73</cites><orcidid>0000-0002-4551-5855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27084316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naves, Raphael</creatorcontrib><creatorcontrib>Barbosa, Bruno H.G</creatorcontrib><creatorcontrib>Ferreiradanton@deg.ufla.br, Danton D</creatorcontrib><title>Classification of Lung Sounds using Higher-Order Statistics: A divide-and-conquer approach</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Highlights • A pattern recognition system to classify five lung sounds is proposed. • The system is based on HOS and on a divide-and-conquer approach. • The proposed approach uses Genetic Algorithms to dimensionality reduction, and k-Nearest Neighbor and Naive Bayes to recognize the signals. • The system achieved a high classification accuracy and can be implemented in an embedded system.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Feature extraction</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>Higher-order statistics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lung sounds</subject><subject>Lungs</subject><subject>Models, Statistical</subject><subject>Other</subject><subject>Pattern recognition</subject><subject>Respiratory Sounds - classification</subject><subject>Statistics</subject><subject>Training</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EotuWP8AB5cglqT_iOEEIqVpBi7RSD0svXCx_TFov2Xixk0r990y0pQcOwMlj-XnfseYdQt4yWjHKmotd5fYHW3GsK8orysQLsmKt4qWSjXxJVvjQlbyh6oSc5ryjlHIpm9fkhCva1oI1K_J9PZicQx-cmUIci9gXm3m8K7ZxHn0u5hzwch3u7iGVN8lDKrYTknkKLn8oLgsfHoKH0oy-dHH8OSNgDocUjbs_J696M2R483Sekdsvn7-tr8vNzdXX9eWmdLVSUylt3bfQcGZEVztDe1vbphYOaC0tt0b2THnorBW-tVIqQYWsQUre-0YIUOKMvD_6Ylv8QJ70PmQHw2BGiHPWrGU4ApxS929UdbSTHOn_QFsmBe_axZUfUZdizgl6fUhhb9KjZlQvSemdXpLSS1Kaco1Joejdk_9s9-CfJb-jQeDjEQCc3UOApLMLMDrwIYGbtI_h7_6f_pC7IYwY8_ADHiHv4pxGTEUznVGgt8uuLKuCnbFktfgFdVy4OA</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Naves, Raphael</creator><creator>Barbosa, Bruno H.G</creator><creator>Ferreiradanton@deg.ufla.br, Danton D</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4551-5855</orcidid></search><sort><creationdate>20160601</creationdate><title>Classification of Lung Sounds using Higher-Order Statistics: A divide-and-conquer approach</title><author>Naves, Raphael ; Barbosa, Bruno H.G ; Ferreiradanton@deg.ufla.br, Danton D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Feature extraction</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>Higher-order statistics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lung sounds</topic><topic>Lungs</topic><topic>Models, Statistical</topic><topic>Other</topic><topic>Pattern recognition</topic><topic>Respiratory Sounds - classification</topic><topic>Statistics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naves, Raphael</creatorcontrib><creatorcontrib>Barbosa, Bruno H.G</creatorcontrib><creatorcontrib>Ferreiradanton@deg.ufla.br, Danton D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naves, Raphael</au><au>Barbosa, Bruno H.G</au><au>Ferreiradanton@deg.ufla.br, Danton D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Lung Sounds using Higher-Order Statistics: A divide-and-conquer approach</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>129</volume><spage>12</spage><epage>20</epage><pages>12-20</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Highlights • A pattern recognition system to classify five lung sounds is proposed. • The system is based on HOS and on a divide-and-conquer approach. • The proposed approach uses Genetic Algorithms to dimensionality reduction, and k-Nearest Neighbor and Naive Bayes to recognize the signals. • The system achieved a high classification accuracy and can be implemented in an embedded system.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>27084316</pmid><doi>10.1016/j.cmpb.2016.02.013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4551-5855</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2016-06, Vol.129, p.12-20 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816072019 |
source | Elsevier |
subjects | Acoustics Algorithms Bayes Theorem Classification Classifiers Feature extraction Genetic Algorithm Genetic algorithms Higher-order statistics Humans Internal Medicine Lung sounds Lungs Models, Statistical Other Pattern recognition Respiratory Sounds - classification Statistics Training |
title | Classification of Lung Sounds using Higher-Order Statistics: A divide-and-conquer approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Lung%20Sounds%20using%20Higher-Order%20Statistics:%20A%20divide-and-conquer%20approach&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Naves,%20Raphael&rft.date=2016-06-01&rft.volume=129&rft.spage=12&rft.epage=20&rft.pages=12-20&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2016.02.013&rft_dat=%3Cproquest_cross%3E1790952072%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-5b4f8e621a394ca0fb4b643ce045b2ba5f17de9bb3d8b55730354e552fd633e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781532989&rft_id=info:pmid/27084316&rfr_iscdi=true |