Loading…
Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)
We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene [pi] and copper d orbitals. Our electronic structure calculations agree well with the ex...
Saved in:
Published in: | Physical review. B 2016-04, Vol.93 (15), Article 155142 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3 |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Frank, Tobias Gmitra, Martin Fabian, Jaroslav |
description | We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene [pi] and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of [mu]eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper. |
doi_str_mv | 10.1103/PhysRevB.93.155142 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816082121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816082121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWLR_wFWWdTE1L5lkJkstfkFBkboOaebFRqaTmkzF-feOVF29uzhc7juEXACbAzBx9bwZ8gt-3sy1mIOUUPIjMuGl0oXWSh__Z8lOyTTnd8YYKKYrpidkudpgTAONnmKLrk-xC47arqF5F7oipnXo6S7Fr7AN_UDR-xHKNHT0LdndBjuksaOL_QwALs_JibdtxunvPSOvd7erxUOxfLp_XFwvCyc06wsopdWNblyFpRdrr1RlZW29qC1TwEsHZVOxSgJntZVKoeTga3SV5Y0slRNnZHboHYd97DH3Zhuyw7a1HcZ9NlCP_9UcOIwoP6AuxZwTerNLYWvTYICZH3vmz57RwhzsiW-3CmMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816082121</pqid></control><display><type>article</type><title>Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Frank, Tobias ; Gmitra, Martin ; Fabian, Jaroslav</creator><creatorcontrib>Frank, Tobias ; Gmitra, Martin ; Fabian, Jaroslav</creatorcontrib><description>We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene [pi] and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of [mu]eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.155142</identifier><language>eng</language><subject>Condensed matter ; Copper ; Graphene ; Mathematical models ; Orbitals ; Proximity ; Proximity effect (electricity) ; Spin-orbit interactions</subject><ispartof>Physical review. B, 2016-04, Vol.93 (15), Article 155142</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3</citedby><cites>FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frank, Tobias</creatorcontrib><creatorcontrib>Gmitra, Martin</creatorcontrib><creatorcontrib>Fabian, Jaroslav</creatorcontrib><title>Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)</title><title>Physical review. B</title><description>We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene [pi] and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of [mu]eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper.</description><subject>Condensed matter</subject><subject>Copper</subject><subject>Graphene</subject><subject>Mathematical models</subject><subject>Orbitals</subject><subject>Proximity</subject><subject>Proximity effect (electricity)</subject><subject>Spin-orbit interactions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWLR_wFWWdTE1L5lkJkstfkFBkboOaebFRqaTmkzF-feOVF29uzhc7juEXACbAzBx9bwZ8gt-3sy1mIOUUPIjMuGl0oXWSh__Z8lOyTTnd8YYKKYrpidkudpgTAONnmKLrk-xC47arqF5F7oipnXo6S7Fr7AN_UDR-xHKNHT0LdndBjuksaOL_QwALs_JibdtxunvPSOvd7erxUOxfLp_XFwvCyc06wsopdWNblyFpRdrr1RlZW29qC1TwEsHZVOxSgJntZVKoeTga3SV5Y0slRNnZHboHYd97DH3Zhuyw7a1HcZ9NlCP_9UcOIwoP6AuxZwTerNLYWvTYICZH3vmz57RwhzsiW-3CmMh</recordid><startdate>20160422</startdate><enddate>20160422</enddate><creator>Frank, Tobias</creator><creator>Gmitra, Martin</creator><creator>Fabian, Jaroslav</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160422</creationdate><title>Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)</title><author>Frank, Tobias ; Gmitra, Martin ; Fabian, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>Copper</topic><topic>Graphene</topic><topic>Mathematical models</topic><topic>Orbitals</topic><topic>Proximity</topic><topic>Proximity effect (electricity)</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Tobias</creatorcontrib><creatorcontrib>Gmitra, Martin</creatorcontrib><creatorcontrib>Fabian, Jaroslav</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Tobias</au><au>Gmitra, Martin</au><au>Fabian, Jaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)</atitle><jtitle>Physical review. B</jtitle><date>2016-04-22</date><risdate>2016</risdate><volume>93</volume><issue>15</issue><artnum>155142</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene [pi] and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of [mu]eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper.</abstract><doi>10.1103/PhysRevB.93.155142</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-04, Vol.93 (15), Article 155142 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816082121 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Condensed matter Copper Graphene Mathematical models Orbitals Proximity Proximity effect (electricity) Spin-orbit interactions |
title | Theory of electronic and spin-orbit proximity effects in graphene on Cu(111) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20electronic%20and%20spin-orbit%20proximity%20effects%20in%20graphene%20on%20Cu(111)&rft.jtitle=Physical%20review.%20B&rft.au=Frank,%20Tobias&rft.date=2016-04-22&rft.volume=93&rft.issue=15&rft.artnum=155142&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.155142&rft_dat=%3Cproquest_cross%3E1816082121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-145a9d9dc7e4f3bf667a58af38a06124c14d70751208a566e521f8ec7a2d546c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816082121&rft_id=info:pmid/&rfr_iscdi=true |