Loading…
Generalized Poisson autoregressive models for time series of counts
To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through...
Saved in:
Published in: | Computational statistics & data analysis 2016-07, Vol.99, p.51-67 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373 |
container_end_page | 67 |
container_issue | |
container_start_page | 51 |
container_title | Computational statistics & data analysis |
container_volume | 99 |
creator | Chen, Cathy W.S. Lee, Sangyeol |
description | To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method. |
doi_str_mv | 10.1016/j.csda.2016.01.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816082461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947316000189</els_id><sourcerecordid>1816082461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU85emnNR7dJwYssugoLetBzSJOpZGmbNdMK-uvNsp49zTDzvvPxEHLNWckZr293pUNvS5HzkvGSseaELLhWolByJU7JIjdU0VRKnpMLxB1jTFRKL8h6AyMk24cf8PQ1BsQ4UjtPMcFHAsTwBXSIHnqkXUx0CgNQhBQAaeyoi_M44SU562yPcPUXl-T98eFt_VRsXzbP6_tt4aSUUwEg8i1VLZis_arloPkKGqfbXHIgVKcUSGvBWa99oz0wVinh245b27VSySW5Oc7dp_g5A05mCOig7-0IcUbDNa-Zzht4loqj1KWImKAz-xQGm74NZ-ZAzOzMgZg5EDOMm0wsm-6OpvwtfAVIBl2A0YEPCdxkfAz_2X8BbAd1dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816082461</pqid></control><display><type>article</type><title>Generalized Poisson autoregressive models for time series of counts</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Chen, Cathy W.S. ; Lee, Sangyeol</creator><creatorcontrib>Chen, Cathy W.S. ; Lee, Sangyeol</creatorcontrib><description>To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2016.01.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymmetry ; Autoregressive processes ; Breaking ; Computer simulation ; Counting ; Integer-valued time series ; Mathematical models ; MCMC ; Monte Carlo methods ; Structural break ; Threshold Poisson autoregressive models ; Time series ; Zero-inflated generalized Poisson INGARCH models</subject><ispartof>Computational statistics & data analysis, 2016-07, Vol.99, p.51-67</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</citedby><cites>FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</cites><orcidid>0000-0001-8727-8168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947316000189$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids></links><search><creatorcontrib>Chen, Cathy W.S.</creatorcontrib><creatorcontrib>Lee, Sangyeol</creatorcontrib><title>Generalized Poisson autoregressive models for time series of counts</title><title>Computational statistics & data analysis</title><description>To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.</description><subject>Asymmetry</subject><subject>Autoregressive processes</subject><subject>Breaking</subject><subject>Computer simulation</subject><subject>Counting</subject><subject>Integer-valued time series</subject><subject>Mathematical models</subject><subject>MCMC</subject><subject>Monte Carlo methods</subject><subject>Structural break</subject><subject>Threshold Poisson autoregressive models</subject><subject>Time series</subject><subject>Zero-inflated generalized Poisson INGARCH models</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU85emnNR7dJwYssugoLetBzSJOpZGmbNdMK-uvNsp49zTDzvvPxEHLNWckZr293pUNvS5HzkvGSseaELLhWolByJU7JIjdU0VRKnpMLxB1jTFRKL8h6AyMk24cf8PQ1BsQ4UjtPMcFHAsTwBXSIHnqkXUx0CgNQhBQAaeyoi_M44SU562yPcPUXl-T98eFt_VRsXzbP6_tt4aSUUwEg8i1VLZis_arloPkKGqfbXHIgVKcUSGvBWa99oz0wVinh245b27VSySW5Oc7dp_g5A05mCOig7-0IcUbDNa-Zzht4loqj1KWImKAz-xQGm74NZ-ZAzOzMgZg5EDOMm0wsm-6OpvwtfAVIBl2A0YEPCdxkfAz_2X8BbAd1dQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Chen, Cathy W.S.</creator><creator>Lee, Sangyeol</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8727-8168</orcidid></search><sort><creationdate>201607</creationdate><title>Generalized Poisson autoregressive models for time series of counts</title><author>Chen, Cathy W.S. ; Lee, Sangyeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Autoregressive processes</topic><topic>Breaking</topic><topic>Computer simulation</topic><topic>Counting</topic><topic>Integer-valued time series</topic><topic>Mathematical models</topic><topic>MCMC</topic><topic>Monte Carlo methods</topic><topic>Structural break</topic><topic>Threshold Poisson autoregressive models</topic><topic>Time series</topic><topic>Zero-inflated generalized Poisson INGARCH models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cathy W.S.</creatorcontrib><creatorcontrib>Lee, Sangyeol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cathy W.S.</au><au>Lee, Sangyeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Poisson autoregressive models for time series of counts</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2016-07</date><risdate>2016</risdate><volume>99</volume><spage>51</spage><epage>67</epage><pages>51-67</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2016.01.009</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8727-8168</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2016-07, Vol.99, p.51-67 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816082461 |
source | ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Backfile Package - Decision Sciences [YDT] |
subjects | Asymmetry Autoregressive processes Breaking Computer simulation Counting Integer-valued time series Mathematical models MCMC Monte Carlo methods Structural break Threshold Poisson autoregressive models Time series Zero-inflated generalized Poisson INGARCH models |
title | Generalized Poisson autoregressive models for time series of counts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Poisson%20autoregressive%20models%20for%20time%20series%20of%20counts&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Chen,%20Cathy%20W.S.&rft.date=2016-07&rft.volume=99&rft.spage=51&rft.epage=67&rft.pages=51-67&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2016.01.009&rft_dat=%3Cproquest_cross%3E1816082461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816082461&rft_id=info:pmid/&rfr_iscdi=true |