Loading…

Generalized Poisson autoregressive models for time series of counts

To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2016-07, Vol.99, p.51-67
Main Authors: Chen, Cathy W.S., Lee, Sangyeol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373
cites cdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373
container_end_page 67
container_issue
container_start_page 51
container_title Computational statistics & data analysis
container_volume 99
creator Chen, Cathy W.S.
Lee, Sangyeol
description To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.
doi_str_mv 10.1016/j.csda.2016.01.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816082461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947316000189</els_id><sourcerecordid>1816082461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU85emnNR7dJwYssugoLetBzSJOpZGmbNdMK-uvNsp49zTDzvvPxEHLNWckZr293pUNvS5HzkvGSseaELLhWolByJU7JIjdU0VRKnpMLxB1jTFRKL8h6AyMk24cf8PQ1BsQ4UjtPMcFHAsTwBXSIHnqkXUx0CgNQhBQAaeyoi_M44SU562yPcPUXl-T98eFt_VRsXzbP6_tt4aSUUwEg8i1VLZis_arloPkKGqfbXHIgVKcUSGvBWa99oz0wVinh245b27VSySW5Oc7dp_g5A05mCOig7-0IcUbDNa-Zzht4loqj1KWImKAz-xQGm74NZ-ZAzOzMgZg5EDOMm0wsm-6OpvwtfAVIBl2A0YEPCdxkfAz_2X8BbAd1dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816082461</pqid></control><display><type>article</type><title>Generalized Poisson autoregressive models for time series of counts</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Chen, Cathy W.S. ; Lee, Sangyeol</creator><creatorcontrib>Chen, Cathy W.S. ; Lee, Sangyeol</creatorcontrib><description>To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2016.01.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymmetry ; Autoregressive processes ; Breaking ; Computer simulation ; Counting ; Integer-valued time series ; Mathematical models ; MCMC ; Monte Carlo methods ; Structural break ; Threshold Poisson autoregressive models ; Time series ; Zero-inflated generalized Poisson INGARCH models</subject><ispartof>Computational statistics &amp; data analysis, 2016-07, Vol.99, p.51-67</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</citedby><cites>FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</cites><orcidid>0000-0001-8727-8168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947316000189$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids></links><search><creatorcontrib>Chen, Cathy W.S.</creatorcontrib><creatorcontrib>Lee, Sangyeol</creatorcontrib><title>Generalized Poisson autoregressive models for time series of counts</title><title>Computational statistics &amp; data analysis</title><description>To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.</description><subject>Asymmetry</subject><subject>Autoregressive processes</subject><subject>Breaking</subject><subject>Computer simulation</subject><subject>Counting</subject><subject>Integer-valued time series</subject><subject>Mathematical models</subject><subject>MCMC</subject><subject>Monte Carlo methods</subject><subject>Structural break</subject><subject>Threshold Poisson autoregressive models</subject><subject>Time series</subject><subject>Zero-inflated generalized Poisson INGARCH models</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU85emnNR7dJwYssugoLetBzSJOpZGmbNdMK-uvNsp49zTDzvvPxEHLNWckZr293pUNvS5HzkvGSseaELLhWolByJU7JIjdU0VRKnpMLxB1jTFRKL8h6AyMk24cf8PQ1BsQ4UjtPMcFHAsTwBXSIHnqkXUx0CgNQhBQAaeyoi_M44SU562yPcPUXl-T98eFt_VRsXzbP6_tt4aSUUwEg8i1VLZis_arloPkKGqfbXHIgVKcUSGvBWa99oz0wVinh245b27VSySW5Oc7dp_g5A05mCOig7-0IcUbDNa-Zzht4loqj1KWImKAz-xQGm74NZ-ZAzOzMgZg5EDOMm0wsm-6OpvwtfAVIBl2A0YEPCdxkfAz_2X8BbAd1dQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Chen, Cathy W.S.</creator><creator>Lee, Sangyeol</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8727-8168</orcidid></search><sort><creationdate>201607</creationdate><title>Generalized Poisson autoregressive models for time series of counts</title><author>Chen, Cathy W.S. ; Lee, Sangyeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Autoregressive processes</topic><topic>Breaking</topic><topic>Computer simulation</topic><topic>Counting</topic><topic>Integer-valued time series</topic><topic>Mathematical models</topic><topic>MCMC</topic><topic>Monte Carlo methods</topic><topic>Structural break</topic><topic>Threshold Poisson autoregressive models</topic><topic>Time series</topic><topic>Zero-inflated generalized Poisson INGARCH models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cathy W.S.</creatorcontrib><creatorcontrib>Lee, Sangyeol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cathy W.S.</au><au>Lee, Sangyeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Poisson autoregressive models for time series of counts</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2016-07</date><risdate>2016</risdate><volume>99</volume><spage>51</spage><epage>67</epage><pages>51-67</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2016.01.009</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8727-8168</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2016-07, Vol.99, p.51-67
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1816082461
source ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Backfile Package - Decision Sciences [YDT]
subjects Asymmetry
Autoregressive processes
Breaking
Computer simulation
Counting
Integer-valued time series
Mathematical models
MCMC
Monte Carlo methods
Structural break
Threshold Poisson autoregressive models
Time series
Zero-inflated generalized Poisson INGARCH models
title Generalized Poisson autoregressive models for time series of counts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Poisson%20autoregressive%20models%20for%20time%20series%20of%20counts&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Chen,%20Cathy%20W.S.&rft.date=2016-07&rft.volume=99&rft.spage=51&rft.epage=67&rft.pages=51-67&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2016.01.009&rft_dat=%3Cproquest_cross%3E1816082461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-ee2352462036d5b1e815e9c8b462ce27f77e3aaecad8d98de00472dbf1aafb373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816082461&rft_id=info:pmid/&rfr_iscdi=true