Loading…
Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete
Fiber reinforced concrete structures are subjected to chloride and carbonation penetration that could initiate corrosion of steel fibers, with eventual pernicious consequences in terms of structural and durability performance. Cracks in concrete are known to hasten initiation of steel corrosion in r...
Saved in:
Published in: | Cement and concrete research 2016-01, Vol.79, p.112-122 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fiber reinforced concrete structures are subjected to chloride and carbonation penetration that could initiate corrosion of steel fibers, with eventual pernicious consequences in terms of structural and durability performance. Cracks in concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. The investigation of the impact of cracks on the corrosion initiation and the associated interfacial damage between concrete and steel fibers is important for understanding the mechanical behavior of steel fiber reinforced concrete.
In the present work, with the aim of studying the corrosion action on the mechanical behavior of cracked Steel Fiber Reinforced Self-Compacting Concrete (SFRSCC), an experimental program was performed to characterize the corrosion of hooked-end steel fibers and to assess the fiber pullout behavior in cracked concrete, previously subject to the action of corrosion by exposure to aggressive chloride environment. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2015.09.005 |