Loading…

Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution

Efficient synthesis of high-quality quantum dots (QDs) with excellent optical properties by aqueous synthesis is still of great significance for extended optical applications. Herein we highlight the advantages in optical properties of colloidal CdTe@ZnS QDs prepared by a facile and highly effective...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2016-09, Vol.27 (36), p.365707-365707
Main Authors: Wang, Yongbo, Si, Boni, Lu, Siwu, Ma, Xuan, Liu, Enzhou, Fan, Jun, Li, Xinghua, Hu, Xiaoyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient synthesis of high-quality quantum dots (QDs) with excellent optical properties by aqueous synthesis is still of great significance for extended optical applications. Herein we highlight the advantages in optical properties of colloidal CdTe@ZnS QDs prepared by a facile and highly effective aqueous synthesis method. These achievements were realized by delicate manipulation of the conditions involved in nucleation and the growth process. Transmission electron microscopy (TEM) images indicated the QDs were uniform size and well dispersible. The emission peaks of the as-prepared QDs could shift from 496 to 698 nm with narrow full width at half maximum (FWHM), and the corresponding fluorescent color changed from green to red. Moreover, the emission could even reach to the near-infrared (NIR) region (706-796 nm) by extending the reaction time. The highest photoluminescence (PL) quantum yield (QY) of the QDs could reach to 60%, and the average of FWHM was about 55 nm. To address the problem of wide size-distribution in PL QY decrease and FWHM broadening, the colloids of QDs prepared at long reaction time (above 3 h) were centrifuged (12 000 r min−1). In addition, the assessment of QD cytotoxicity indicated the CdTe@ZnS QDs were much less cytotoxic and showed good biocompatibility. Compared with organic synthesis, our aqueous synthesis of QDs could be carried out efficiently on a large scale and showed good batch-to-batch reproducibility. The as-prepared CdTe@ZnS QDs exhibited excellent optical properties and hold a good potential to be applied in optoelectronic and biological applications.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/27/36/365707