Loading…

Effect of Adding McKenzie Syndrome, Centralization, Directional Preference, and Psychosocial Classification Variables to a Risk-Adjusted Model Predicting Functional Status Outcomes for Patients With Lumbar Impairments

Study Design Retrospective cohort. Background Patient-classification subgroupings may be important prognostic factors explaining outcomes. Objectives To determine effects of adding classification variables (McKenzie syndrome and pain patterns, including centralization and directional preference; Sym...

Full description

Saved in:
Bibliographic Details
Published in:The journal of orthopaedic and sports physical therapy 2016-09, Vol.46 (9), p.726-741
Main Authors: Werneke, Mark W, Edmond, Susan, Deutscher, Daniel, Ward, Jason, Grigsby, David, Young, Michelle, McGill, Troy, McClenahan, Brian, Weinberg, Jon, Davidow, Amy L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Study Design Retrospective cohort. Background Patient-classification subgroupings may be important prognostic factors explaining outcomes. Objectives To determine effects of adding classification variables (McKenzie syndrome and pain patterns, including centralization and directional preference; Symptom Checklist Back Pain Prediction Model [SCL BPPM]; and the Fear-Avoidance Beliefs Questionnaire subscales of work and physical activity) to a baseline risk-adjusted model predicting functional status (FS) outcomes. Methods Consecutive patients completed a battery of questionnaires that gathered information on 11 risk-adjustment variables. Physical therapists trained in Mechanical Diagnosis and Therapy methods classified each patient by McKenzie syndromes and pain pattern. Functional status was assessed at discharge by patient-reported outcomes. Only patients with complete data were included. Risk of selection bias was assessed. Prediction of discharge FS was assessed using linear stepwise regression models, allowing 13 variables to enter the model. Significant variables were retained in subsequent models. Model power (R(2)) and beta coefficients for model variables were estimated. Results Two thousand sixty-six patients with lumbar impairments were evaluated. Of those, 994 (48%), 10 (
ISSN:0190-6011
1938-1344
DOI:10.2519/jospt.2016.6266