Loading…
Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions
The development of new catalysts for energy technology and environmental remediation requires a thorough knowledge of how the physical and chemical properties of a catalyst affect its reactivity. For supported metal nanoparticles (NPs), such properties can include the particle size, shape, compositi...
Saved in:
Published in: | The journal of physical chemistry letters 2016-09, Vol.7 (17), p.3519-3533 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of new catalysts for energy technology and environmental remediation requires a thorough knowledge of how the physical and chemical properties of a catalyst affect its reactivity. For supported metal nanoparticles (NPs), such properties can include the particle size, shape, composition, and chemical state, but a critical parameter which must not be overlooked is the role of the NP support. Here, we highlight the key mechanisms behind support-induced enhancement in the catalytic properties of metal NPs. These include support-induced changes in the NP morphology, stability, electronic structure, and chemical state, as well as changes in the support due to the NPs. Utilizing the support-dependent phenomena described in this Perspective may allow significant breakthroughs in the design and tailoring of the catalytic activity and selectivity of metal nanoparticles. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.6b01198 |