Loading…

Microbial Resistance to Metals in the Environment

Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processe...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and Environmental Safety 2000-03, Vol.45 (3), p.198-207
Main Authors: Bruins, Mark R., Kapil, Sanjay, Oehme, Frederick W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.
ISSN:0147-6513
1090-2414
DOI:10.1006/eesa.1999.1860