Loading…

Microbial Resistance to Metals in the Environment

Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processe...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and Environmental Safety 2000-03, Vol.45 (3), p.198-207
Main Authors: Bruins, Mark R., Kapil, Sanjay, Oehme, Frederick W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873
cites cdi_FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873
container_end_page 207
container_issue 3
container_start_page 198
container_title Ecotoxicology and Environmental Safety
container_volume 45
creator Bruins, Mark R.
Kapil, Sanjay
Oehme, Frederick W.
description Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.
doi_str_mv 10.1006/eesa.1999.1860
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18170917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0147651399918602</els_id><sourcerecordid>14534387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873</originalsourceid><addsrcrecordid>eNqN0E1LxDAQgOEgiq4fV4_Sg3jrOtOkaXMU8QtWBNFzSLMTjHTbNeku-O9N3QW9CJ5yyDND8jJ2ijBFAHlJFM0UlVJTrCXssAmCgrwQKHbZBFBUuSyRH7DDGN8BgENZ7rMDhAoKzusJw0dvQ99402bPFH0cTGcpG_rskQbTxsx32fBG2U239qHvFtQNx2zPpRs62Z5H7PX25uX6Pp893T1cX81yK1Q15MJxqypEVxgrzBzINgUVKFXVVA64QoJCNFI6aW3pauFMkoVryDQNd3XFj9jFZu8y9B8rioNe-GipbU1H_SpqrLEChf-AouSCf2-cbmD6cYyBnF4GvzDhUyPosaYea-qxph5rpoGz7eZVs6D5L77Jl8D5FphoTetCqufjj-NCykImVm8YpV5rT0FH6ymFnvtAdtDz3v_1hC_37o-6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14534387</pqid></control><display><type>article</type><title>Microbial Resistance to Metals in the Environment</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect®</source><creator>Bruins, Mark R. ; Kapil, Sanjay ; Oehme, Frederick W.</creator><creatorcontrib>Bruins, Mark R. ; Kapil, Sanjay ; Oehme, Frederick W.</creatorcontrib><description>Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.</description><identifier>ISSN: 0147-6513</identifier><identifier>EISSN: 1090-2414</identifier><identifier>DOI: 10.1006/eesa.1999.1860</identifier><identifier>PMID: 10702338</identifier><identifier>CODEN: EESADV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Adaptation, Biological - drug effects ; Animal, plant and microbial ecology ; Applied ecology ; Bacteria - drug effects ; Bacteria - metabolism ; Biological and medical sciences ; Biological Transport, Active - drug effects ; Cell Membrane Permeability - drug effects ; Ecotoxicology, biological effects of pollution ; Environmental Pollutants - metabolism ; Environmental Pollutants - pharmacokinetics ; Environmental Pollutants - pharmacology ; essential metals ; Extracellular Space - metabolism ; Fundamental and applied biological sciences. Psychology ; General aspects ; heavy metals ; Inactivation, Metabolic ; Intracellular Fluid - metabolism ; Metals - metabolism ; Metals - pharmacokinetics ; Metals - toxicity ; nonessential metals ; Protein Binding - drug effects ; resistance mechanisms</subject><ispartof>Ecotoxicology and Environmental Safety, 2000-03, Vol.45 (3), p.198-207</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873</citedby><cites>FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0147651399918602$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3548,27921,27923,27924,45779</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1346626$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10702338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruins, Mark R.</creatorcontrib><creatorcontrib>Kapil, Sanjay</creatorcontrib><creatorcontrib>Oehme, Frederick W.</creatorcontrib><title>Microbial Resistance to Metals in the Environment</title><title>Ecotoxicology and Environmental Safety</title><addtitle>Ecotoxicol Environ Saf</addtitle><description>Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.</description><subject>Adaptation, Biological - drug effects</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biological Transport, Active - drug effects</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environmental Pollutants - metabolism</subject><subject>Environmental Pollutants - pharmacokinetics</subject><subject>Environmental Pollutants - pharmacology</subject><subject>essential metals</subject><subject>Extracellular Space - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>heavy metals</subject><subject>Inactivation, Metabolic</subject><subject>Intracellular Fluid - metabolism</subject><subject>Metals - metabolism</subject><subject>Metals - pharmacokinetics</subject><subject>Metals - toxicity</subject><subject>nonessential metals</subject><subject>Protein Binding - drug effects</subject><subject>resistance mechanisms</subject><issn>0147-6513</issn><issn>1090-2414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQgOEgiq4fV4_Sg3jrOtOkaXMU8QtWBNFzSLMTjHTbNeku-O9N3QW9CJ5yyDND8jJ2ijBFAHlJFM0UlVJTrCXssAmCgrwQKHbZBFBUuSyRH7DDGN8BgENZ7rMDhAoKzusJw0dvQ99402bPFH0cTGcpG_rskQbTxsx32fBG2U239qHvFtQNx2zPpRs62Z5H7PX25uX6Pp893T1cX81yK1Q15MJxqypEVxgrzBzINgUVKFXVVA64QoJCNFI6aW3pauFMkoVryDQNd3XFj9jFZu8y9B8rioNe-GipbU1H_SpqrLEChf-AouSCf2-cbmD6cYyBnF4GvzDhUyPosaYea-qxph5rpoGz7eZVs6D5L77Jl8D5FphoTetCqufjj-NCykImVm8YpV5rT0FH6ymFnvtAdtDz3v_1hC_37o-6</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Bruins, Mark R.</creator><creator>Kapil, Sanjay</creator><creator>Oehme, Frederick W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7T7</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20000301</creationdate><title>Microbial Resistance to Metals in the Environment</title><author>Bruins, Mark R. ; Kapil, Sanjay ; Oehme, Frederick W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptation, Biological - drug effects</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biological Transport, Active - drug effects</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environmental Pollutants - metabolism</topic><topic>Environmental Pollutants - pharmacokinetics</topic><topic>Environmental Pollutants - pharmacology</topic><topic>essential metals</topic><topic>Extracellular Space - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>heavy metals</topic><topic>Inactivation, Metabolic</topic><topic>Intracellular Fluid - metabolism</topic><topic>Metals - metabolism</topic><topic>Metals - pharmacokinetics</topic><topic>Metals - toxicity</topic><topic>nonessential metals</topic><topic>Protein Binding - drug effects</topic><topic>resistance mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruins, Mark R.</creatorcontrib><creatorcontrib>Kapil, Sanjay</creatorcontrib><creatorcontrib>Oehme, Frederick W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ecotoxicology and Environmental Safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruins, Mark R.</au><au>Kapil, Sanjay</au><au>Oehme, Frederick W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Resistance to Metals in the Environment</atitle><jtitle>Ecotoxicology and Environmental Safety</jtitle><addtitle>Ecotoxicol Environ Saf</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>45</volume><issue>3</issue><spage>198</spage><epage>207</epage><pages>198-207</pages><issn>0147-6513</issn><eissn>1090-2414</eissn><coden>EESADV</coden><abstract>Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>10702338</pmid><doi>10.1006/eesa.1999.1860</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0147-6513
ispartof Ecotoxicology and Environmental Safety, 2000-03, Vol.45 (3), p.198-207
issn 0147-6513
1090-2414
language eng
recordid cdi_proquest_miscellaneous_18170917
source ScienceDirect Freedom Collection; ScienceDirect®
subjects Adaptation, Biological - drug effects
Animal, plant and microbial ecology
Applied ecology
Bacteria - drug effects
Bacteria - metabolism
Biological and medical sciences
Biological Transport, Active - drug effects
Cell Membrane Permeability - drug effects
Ecotoxicology, biological effects of pollution
Environmental Pollutants - metabolism
Environmental Pollutants - pharmacokinetics
Environmental Pollutants - pharmacology
essential metals
Extracellular Space - metabolism
Fundamental and applied biological sciences. Psychology
General aspects
heavy metals
Inactivation, Metabolic
Intracellular Fluid - metabolism
Metals - metabolism
Metals - pharmacokinetics
Metals - toxicity
nonessential metals
Protein Binding - drug effects
resistance mechanisms
title Microbial Resistance to Metals in the Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Resistance%20to%20Metals%20in%20the%20Environment&rft.jtitle=Ecotoxicology%20and%20Environmental%20Safety&rft.au=Bruins,%20Mark%20R.&rft.date=2000-03-01&rft.volume=45&rft.issue=3&rft.spage=198&rft.epage=207&rft.pages=198-207&rft.issn=0147-6513&rft.eissn=1090-2414&rft.coden=EESADV&rft_id=info:doi/10.1006/eesa.1999.1860&rft_dat=%3Cproquest_cross%3E14534387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-4f3c9711f2ac4ad0ecb2e21697b7f0391e024b66f6cc5f84faf2a2fbeabb3f873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14534387&rft_id=info:pmid/10702338&rfr_iscdi=true