Loading…

Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States

Riverine particulate organic matter (POM) samples were collected bi‐weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996–97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios wer...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2001-05, Vol.15 (7), p.1301-1346
Main Authors: Kendall, Carol, Silva, Steven R., Kelly, Valerie J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Riverine particulate organic matter (POM) samples were collected bi‐weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996–97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios were used to identify four endmember sources of POM: plankton, fresh terrestrial plant material, aquatic plants, and soil organic material. This large‐scale study also incorporated ancillary chemical and hydrologic data to refine and extend the interpretations of POM sources beyond the source characterizations that could be done solely with isotopic and elemental ratios. The ancillary data were especially useful for differentiating between seasonal changes in POM source materials and the effects of local nutrient sources and in‐stream biogeochemical processes. Average values of δ13C and C : N for all four river systems suggested that plankton is the dominant source of POM in these rivers, with higher percentages of plankton downstream of reservoirs. Although the temporal patterns in some rivers are complex, the low δ13C and C : N values in spring and summer probably indicate plankton blooms, whereas relatively elevated values in fall and winter are consistent with greater proportions of decaying aquatic vegetation and/or terrestrial material. Seasonal shifts in the δ13C of POM when the C : N remains relatively constant probably indicate changes in the relative rates of photosynthesis and respiration. Periodic inputs of plant detritus are suggested by C : N ratios >15, principally on the Columbia and Ohio Rivers. The δ15N and δ13C also reflect the importance of internal and external sources of dissolved carbon and nitrogen, and the degree of in‐stream processing. Elevated δ15N values at some sites probably reflect inputs from sewage and/or animal waste. This information on the spatial and temporal variation in sources of POM in four major river systems should prove useful in future food web and nutrient transport studies. Published in 2001 by John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.216