Loading…

ALPK3-deficient cardiomyocytes generated from patient-derived induced pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling and establish that ALPK3 deficiency underlies familial cardiomyopathy

We identified a novel homozygous truncating mutation in the gene encoding alpha kinase 3 (ALPK3) in a family presenting with paediatric cardiomyopathy. A recent study identified biallelic truncating mutations of ALPK3 in three unrelated families; therefore, there is strong genetic evidence that ALPK...

Full description

Saved in:
Bibliographic Details
Published in:European heart journal 2016-09, Vol.37 (33), p.2586-2590
Main Authors: Phelan, Dean G, Anderson, David J, Howden, Sara E, Wong, Raymond C B, Hickey, Peter F, Pope, Kate, Wilson, Gabrielle R, PĂ©bay, Alice, Davis, Andrew M, Petrou, Steven, Elefanty, Andrew G, Stanley, Edouard G, James, Paul A, Macciocca, Ivan, Bahlo, Melanie, Cheung, Michael M, Amor, David J, Elliott, David A, Lockhart, Paul J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We identified a novel homozygous truncating mutation in the gene encoding alpha kinase 3 (ALPK3) in a family presenting with paediatric cardiomyopathy. A recent study identified biallelic truncating mutations of ALPK3 in three unrelated families; therefore, there is strong genetic evidence that ALPK3 mutation causes cardiomyopathy. This study aimed to clarify the mutation mechanism and investigate the molecular and cellular pathogenesis underlying ALPK3-mediated cardiomyopathy. We performed detailed clinical and genetic analyses of a consanguineous family, identifying a new ALPK3 mutation (c.3792G>A, p.W1264X) which undergoes nonsense-mediated decay in ex vivo and in vivo tissues. Ultra-structural analysis of cardiomyocytes derived from patient-specific and human ESC-derived stem cell lines lacking ALPK3 revealed disordered sarcomeres and intercalated discs. Multi-electrode array analysis and calcium imaging demonstrated an extended field potential duration and abnormal calcium handling in mutant contractile cultures. This study validates the genetic evidence, suggesting that mutations in ALPK3 can cause familial cardiomyopathy and demonstrates loss of function as the underlying genetic mechanism. We show that ALPK3-deficient cardiomyocytes derived from pluripotent stem cell models recapitulate the ultrastructural and electrophysiological defects observed in vivo. Analysis of differentiated contractile cultures identified abnormal calcium handling as a potential feature of cardiomyocytes lacking ALPK3, providing functional insights into the molecular mechanisms underlying ALPK3-mediated cardiomyopathy.
ISSN:0195-668X
1522-9645
DOI:10.1093/eurheartj/ehw160