Loading…

Hierarchical Internal Structures in Gelatin–Bovine Serum Albumin/β-Lactoglobulin Gels and Coacervates

Herein, we report the comparative study of gels and complex coacervates of bovine serum albumin (BSA) and beta-lactoglobulin (β-Lg) with gelatin close to their common pI. Surface patch binding produced a range of new soft matter phases (interpolymer complexes) such as opaque coacervates (charge neut...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2016-09, Vol.120 (35), p.9506-9512
Main Authors: Pathak, Jyotsana, Rawat, Kamla, Aswal, V. K, Bohidar, H. B
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we report the comparative study of gels and complex coacervates of bovine serum albumin (BSA) and beta-lactoglobulin (β-Lg) with gelatin close to their common pI. Surface patch binding produced a range of new soft matter phases (interpolymer complexes) such as opaque coacervates (charge neutralized complexes) and transparent gels (overcharged complexes). We emphasize on the comparative study of the microstructure of coacervates and gels formed at different mixing ratios using small angle scattering (SANS) data. It was found that phase states were entirely defined by the mixing ratio r = [GB]:[β-Lg or BSA]. Thermo-viscoelastic profiles of aforesaid samples revealed a smaller storage modulus and lower melting temperature for coacervates compared to gels. Thermally activated samples generated additional phases that were also probed by SANS and rheology. Thus, it is established that intermolecular association between globular proteins and a random coil polypeptide can generate various soft matter states that may facilitate harvesting of novel biomaterials.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.6b05378