Loading…
3-D Baroclinic numerical simulation of the South China Sea. 1. Upper circulation
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, mo...
Saved in:
Published in: | Chinese journal of oceanology and limnology 2001-01, Vol.19 (3), p.208-216 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy's movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS. |
---|---|
ISSN: | 0254-4059 |