Loading…

An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables

In this study analysis of data whose character was kept secret was performed by employing a variety of nonlinear approaches. The idea was to test the ability of approaches stemming from the theory of nonlinear dynamical systems to infer the true properties hidden in the data. The approaches employed...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the American Meteorological Society 1994-09, Vol.75 (9), p.1623-1633
Main Authors: Tsonis, A. A., Triantafyllou, G. N., Elsner, J. B., Holdzkom, J. J., Kirwan, A. D.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1633
container_issue 9
container_start_page 1623
container_title Bulletin of the American Meteorological Society
container_volume 75
creator Tsonis, A. A.
Triantafyllou, G. N.
Elsner, J. B.
Holdzkom, J. J.
Kirwan, A. D.
description In this study analysis of data whose character was kept secret was performed by employing a variety of nonlinear approaches. The idea was to test the ability of approaches stemming from the theory of nonlinear dynamical systems to infer the true properties hidden in the data. The approaches employed include dimension estimation, nonlinear prediction, Lyapunov exponent estimation, and false nearest neighbors. It is concluded that even though the methods have problems and occasionally may be inconclusive, when correctly applied they are effective in delineating the dynamics underlying the data.
doi_str_mv 10.1175/1520-0477(1994)075<1623:AIOTAO>2.0.CO;2
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18189636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26231966</jstor_id><sourcerecordid>26231966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-ca6018fa23b4d5860b7869a032b7078d9b8afd7a3b81ffa0f025c5eaeea862e23</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4MoeLb9E4QgIvqw10mymx8qwnLa9qC6LxUfQ3YvsTn2kprsFe6_N8uVe_DFlwyT-eQ7mfkidElgSYhoLklDoYJaiPdEqfoDiOYz4ZR9bNfdXdt9oUtYrrpP9BlanMjnaAEArCqHeIle5bydUybJAv1qA16HR5sn_9tMPgYcHZ7uLW57P_rpMKc_Yhh9sCbh73a6j5uMp1geOZvw10MwOz9k7FLc4a7PNj2afrT5HL1wZsz24imeoZ9X3-5WN9Vtd71etbfVwBo2VYPhQKQzlPX1ppEceiG5MsBoL0DIjeqlcRthWC-JcwYc0GZorLHWSE4tZWfo3VH3IcU_-zKG3vk82HE0wcZ91kQSqTjjBXzzD7iN-xTK3zRllDOllPg_JEEW6PoIDSnmnKzTD8nvTDpoAnq2SM-L1_Pi9WyRhvmqWKSPFmmqQa9KKEpvn9qZPJjRJRMGn09yNeU1kBl7fcS2eYrpVKZFkijO2V9OFJzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232639997</pqid></control><display><type>article</type><title>An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Tsonis, A. A. ; Triantafyllou, G. N. ; Elsner, J. B. ; Holdzkom, J. J. ; Kirwan, A. D.</creator><creatorcontrib>Tsonis, A. A. ; Triantafyllou, G. N. ; Elsner, J. B. ; Holdzkom, J. J. ; Kirwan, A. D.</creatorcontrib><description>In this study analysis of data whose character was kept secret was performed by employing a variety of nonlinear approaches. The idea was to test the ability of approaches stemming from the theory of nonlinear dynamical systems to infer the true properties hidden in the data. The approaches employed include dimension estimation, nonlinear prediction, Lyapunov exponent estimation, and false nearest neighbors. It is concluded that even though the methods have problems and occasionally may be inconclusive, when correctly applied they are effective in delineating the dynamics underlying the data.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/1520-0477(1994)075&lt;1623:AIOTAO&gt;2.0.CO;2</identifier><identifier>CODEN: BAMOAD</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Autocorrelation ; Chaos theory ; Dynamical systems ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Meteorology ; Neighborhoods ; Series convergence ; Spectral index ; Time series ; Time series forecasting ; Time series models</subject><ispartof>Bulletin of the American Meteorological Society, 1994-09, Vol.75 (9), p.1623-1633</ispartof><rights>Copyright 1994, American Meteorological Society (AMS)</rights><rights>1994 INIST-CNRS</rights><rights>Copyright American Meteorological Society Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26231966$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26231966$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4264012$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsonis, A. A.</creatorcontrib><creatorcontrib>Triantafyllou, G. N.</creatorcontrib><creatorcontrib>Elsner, J. B.</creatorcontrib><creatorcontrib>Holdzkom, J. J.</creatorcontrib><creatorcontrib>Kirwan, A. D.</creatorcontrib><title>An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables</title><title>Bulletin of the American Meteorological Society</title><description>In this study analysis of data whose character was kept secret was performed by employing a variety of nonlinear approaches. The idea was to test the ability of approaches stemming from the theory of nonlinear dynamical systems to infer the true properties hidden in the data. The approaches employed include dimension estimation, nonlinear prediction, Lyapunov exponent estimation, and false nearest neighbors. It is concluded that even though the methods have problems and occasionally may be inconclusive, when correctly applied they are effective in delineating the dynamics underlying the data.</description><subject>Autocorrelation</subject><subject>Chaos theory</subject><subject>Dynamical systems</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Meteorology</subject><subject>Neighborhoods</subject><subject>Series convergence</subject><subject>Spectral index</subject><subject>Time series</subject><subject>Time series forecasting</subject><subject>Time series models</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkd9rFDEQx4MoeLb9E4QgIvqw10mymx8qwnLa9qC6LxUfQ3YvsTn2kprsFe6_N8uVe_DFlwyT-eQ7mfkidElgSYhoLklDoYJaiPdEqfoDiOYz4ZR9bNfdXdt9oUtYrrpP9BlanMjnaAEArCqHeIle5bydUybJAv1qA16HR5sn_9tMPgYcHZ7uLW57P_rpMKc_Yhh9sCbh73a6j5uMp1geOZvw10MwOz9k7FLc4a7PNj2afrT5HL1wZsz24imeoZ9X3-5WN9Vtd71etbfVwBo2VYPhQKQzlPX1ppEceiG5MsBoL0DIjeqlcRthWC-JcwYc0GZorLHWSE4tZWfo3VH3IcU_-zKG3vk82HE0wcZ91kQSqTjjBXzzD7iN-xTK3zRllDOllPg_JEEW6PoIDSnmnKzTD8nvTDpoAnq2SM-L1_Pi9WyRhvmqWKSPFmmqQa9KKEpvn9qZPJjRJRMGn09yNeU1kBl7fcS2eYrpVKZFkijO2V9OFJzW</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Tsonis, A. A.</creator><creator>Triantafyllou, G. N.</creator><creator>Elsner, J. B.</creator><creator>Holdzkom, J. J.</creator><creator>Kirwan, A. D.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>19940901</creationdate><title>An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables</title><author>Tsonis, A. A. ; Triantafyllou, G. N. ; Elsner, J. B. ; Holdzkom, J. J. ; Kirwan, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-ca6018fa23b4d5860b7869a032b7078d9b8afd7a3b81ffa0f025c5eaeea862e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Autocorrelation</topic><topic>Chaos theory</topic><topic>Dynamical systems</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Meteorology</topic><topic>Neighborhoods</topic><topic>Series convergence</topic><topic>Spectral index</topic><topic>Time series</topic><topic>Time series forecasting</topic><topic>Time series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsonis, A. A.</creatorcontrib><creatorcontrib>Triantafyllou, G. N.</creatorcontrib><creatorcontrib>Elsner, J. B.</creatorcontrib><creatorcontrib>Holdzkom, J. J.</creatorcontrib><creatorcontrib>Kirwan, A. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsonis, A. A.</au><au>Triantafyllou, G. N.</au><au>Elsner, J. B.</au><au>Holdzkom, J. J.</au><au>Kirwan, A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>75</volume><issue>9</issue><spage>1623</spage><epage>1633</epage><pages>1623-1633</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><coden>BAMOAD</coden><abstract>In this study analysis of data whose character was kept secret was performed by employing a variety of nonlinear approaches. The idea was to test the ability of approaches stemming from the theory of nonlinear dynamical systems to infer the true properties hidden in the data. The approaches employed include dimension estimation, nonlinear prediction, Lyapunov exponent estimation, and false nearest neighbors. It is concluded that even though the methods have problems and occasionally may be inconclusive, when correctly applied they are effective in delineating the dynamics underlying the data.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0477(1994)075&lt;1623:AIOTAO&gt;2.0.CO;2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 1994-09, Vol.75 (9), p.1623-1633
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_miscellaneous_18189636
source JSTOR Archival Journals and Primary Sources Collection
subjects Autocorrelation
Chaos theory
Dynamical systems
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Meteorology
Neighborhoods
Series convergence
Spectral index
Time series
Time series forecasting
Time series models
title An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Investigation%20of%20the%20Ability%20of%20Nonlinear%20Methods%20to%20Infer%20Dynamics%20from%20Observables&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Tsonis,%20A.%20A.&rft.date=1994-09-01&rft.volume=75&rft.issue=9&rft.spage=1623&rft.epage=1633&rft.pages=1623-1633&rft.issn=0003-0007&rft.eissn=1520-0477&rft.coden=BAMOAD&rft_id=info:doi/10.1175/1520-0477(1994)075%3C1623:AIOTAO%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26231966%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-ca6018fa23b4d5860b7869a032b7078d9b8afd7a3b81ffa0f025c5eaeea862e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232639997&rft_id=info:pmid/&rft_jstor_id=26231966&rfr_iscdi=true