Loading…

Automated Synthesis and Analysis of Switching Gene Regulatory Networks

Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a...

Full description

Saved in:
Bibliographic Details
Published in:BioSystems 2016-08, Vol.146, p.26-34
Main Authors: Shavit, Yoli, Yordanov, Boyan, Dunn, Sara-Jane, Wintersteiger, Christoph M., Otani, Tomoki, Hamadi, Youssef, Livesey, Frederick J., Kugler, Hillel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3
cites cdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3
container_end_page 34
container_issue
container_start_page 26
container_title BioSystems
container_volume 146
creator Shavit, Yoli
Yordanov, Boyan
Dunn, Sara-Jane
Wintersteiger, Christoph M.
Otani, Tomoki
Hamadi, Youssef
Livesey, Frederick J.
Kugler, Hillel
description Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.
doi_str_mv 10.1016/j.biosystems.2016.03.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819121776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264716300338</els_id><sourcerecordid>1819121776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EomX5CyhHLgm2kzjOsSAKSAgklrPlZQIuSVxsB5R_T6qyHJnLaEbvzdN8CCUEZwQTdrbKlHVhDBG6kNFpk-E8w4TuoDnhFU15TotdNMc5zlPKimqGDkJY4alKTvbRjFak4hXP52i5GKLrZASTPI59fIVgQyJ7kyx62Y6bwTXJ46eN-tX2L8kV9JA8wMvQyuj8mNxB_HT-LRyhvUa2AY6_-yF6Xl4-XVynt_dXNxeL21QXtIiplNw0Feiy5MyUdQOGMUmJ4QY4VUorUmJgShdMyQJyXMpaqZJDXdKCaCXzQ3S6vbv27n2AEEVng4a2lT24IQjCSU0oqSo2SflWqr0LwUMj1t520o-CYLGhKFbij6LYUBQ4FxPFyXrynTKoDsyv8QfbJDjfCmD69cOCF0Fb6DUY60FHYZz9P-ULUueKcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819121776</pqid></control><display><type>article</type><title>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</title><source>ScienceDirect Journals</source><creator>Shavit, Yoli ; Yordanov, Boyan ; Dunn, Sara-Jane ; Wintersteiger, Christoph M. ; Otani, Tomoki ; Hamadi, Youssef ; Livesey, Frederick J. ; Kugler, Hillel</creator><creatorcontrib>Shavit, Yoli ; Yordanov, Boyan ; Dunn, Sara-Jane ; Wintersteiger, Christoph M. ; Otani, Tomoki ; Hamadi, Youssef ; Livesey, Frederick J. ; Kugler, Hillel</creatorcontrib><description>Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2016.03.012</identifier><identifier>PMID: 27178783</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Animals ; Biological modelling ; Boolean networks (BNs) ; Cell Differentiation - genetics ; Cell fate ; Computational Biology - methods ; Computer Simulation ; Gene regulatory networks (GRNs) ; Gene Regulatory Networks - genetics ; Humans ; Mammalian cortex ; Models, Genetic ; Nerve Net - metabolism ; Neurons - cytology ; Neurons - metabolism ; Satisfiability Modulo Theories (SMT) ; Self-modifying code ; Synthesis</subject><ispartof>BioSystems, 2016-08, Vol.146, p.26-34</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</citedby><cites>FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27178783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shavit, Yoli</creatorcontrib><creatorcontrib>Yordanov, Boyan</creatorcontrib><creatorcontrib>Dunn, Sara-Jane</creatorcontrib><creatorcontrib>Wintersteiger, Christoph M.</creatorcontrib><creatorcontrib>Otani, Tomoki</creatorcontrib><creatorcontrib>Hamadi, Youssef</creatorcontrib><creatorcontrib>Livesey, Frederick J.</creatorcontrib><creatorcontrib>Kugler, Hillel</creatorcontrib><title>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological modelling</subject><subject>Boolean networks (BNs)</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Gene regulatory networks (GRNs)</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Humans</subject><subject>Mammalian cortex</subject><subject>Models, Genetic</subject><subject>Nerve Net - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Satisfiability Modulo Theories (SMT)</subject><subject>Self-modifying code</subject><subject>Synthesis</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQhS0EomX5CyhHLgm2kzjOsSAKSAgklrPlZQIuSVxsB5R_T6qyHJnLaEbvzdN8CCUEZwQTdrbKlHVhDBG6kNFpk-E8w4TuoDnhFU15TotdNMc5zlPKimqGDkJY4alKTvbRjFak4hXP52i5GKLrZASTPI59fIVgQyJ7kyx62Y6bwTXJ46eN-tX2L8kV9JA8wMvQyuj8mNxB_HT-LRyhvUa2AY6_-yF6Xl4-XVynt_dXNxeL21QXtIiplNw0Feiy5MyUdQOGMUmJ4QY4VUorUmJgShdMyQJyXMpaqZJDXdKCaCXzQ3S6vbv27n2AEEVng4a2lT24IQjCSU0oqSo2SflWqr0LwUMj1t520o-CYLGhKFbij6LYUBQ4FxPFyXrynTKoDsyv8QfbJDjfCmD69cOCF0Fb6DUY60FHYZz9P-ULUueKcQ</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Shavit, Yoli</creator><creator>Yordanov, Boyan</creator><creator>Dunn, Sara-Jane</creator><creator>Wintersteiger, Christoph M.</creator><creator>Otani, Tomoki</creator><creator>Hamadi, Youssef</creator><creator>Livesey, Frederick J.</creator><creator>Kugler, Hillel</creator><general>Elsevier Ireland Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</title><author>Shavit, Yoli ; Yordanov, Boyan ; Dunn, Sara-Jane ; Wintersteiger, Christoph M. ; Otani, Tomoki ; Hamadi, Youssef ; Livesey, Frederick J. ; Kugler, Hillel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological modelling</topic><topic>Boolean networks (BNs)</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Gene regulatory networks (GRNs)</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Humans</topic><topic>Mammalian cortex</topic><topic>Models, Genetic</topic><topic>Nerve Net - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Satisfiability Modulo Theories (SMT)</topic><topic>Self-modifying code</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shavit, Yoli</creatorcontrib><creatorcontrib>Yordanov, Boyan</creatorcontrib><creatorcontrib>Dunn, Sara-Jane</creatorcontrib><creatorcontrib>Wintersteiger, Christoph M.</creatorcontrib><creatorcontrib>Otani, Tomoki</creatorcontrib><creatorcontrib>Hamadi, Youssef</creatorcontrib><creatorcontrib>Livesey, Frederick J.</creatorcontrib><creatorcontrib>Kugler, Hillel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shavit, Yoli</au><au>Yordanov, Boyan</au><au>Dunn, Sara-Jane</au><au>Wintersteiger, Christoph M.</au><au>Otani, Tomoki</au><au>Hamadi, Youssef</au><au>Livesey, Frederick J.</au><au>Kugler, Hillel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2016-08</date><risdate>2016</risdate><volume>146</volume><spage>26</spage><epage>34</epage><pages>26-34</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>27178783</pmid><doi>10.1016/j.biosystems.2016.03.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 2016-08, Vol.146, p.26-34
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_1819121776
source ScienceDirect Journals
subjects Algorithms
Animals
Biological modelling
Boolean networks (BNs)
Cell Differentiation - genetics
Cell fate
Computational Biology - methods
Computer Simulation
Gene regulatory networks (GRNs)
Gene Regulatory Networks - genetics
Humans
Mammalian cortex
Models, Genetic
Nerve Net - metabolism
Neurons - cytology
Neurons - metabolism
Satisfiability Modulo Theories (SMT)
Self-modifying code
Synthesis
title Automated Synthesis and Analysis of Switching Gene Regulatory Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Synthesis%20and%20Analysis%20of%20Switching%20Gene%20Regulatory%20Networks&rft.jtitle=BioSystems&rft.au=Shavit,%20Yoli&rft.date=2016-08&rft.volume=146&rft.spage=26&rft.epage=34&rft.pages=26-34&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2016.03.012&rft_dat=%3Cproquest_cross%3E1819121776%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1819121776&rft_id=info:pmid/27178783&rfr_iscdi=true