Loading…
Automated Synthesis and Analysis of Switching Gene Regulatory Networks
Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a...
Saved in:
Published in: | BioSystems 2016-08, Vol.146, p.26-34 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3 |
container_end_page | 34 |
container_issue | |
container_start_page | 26 |
container_title | BioSystems |
container_volume | 146 |
creator | Shavit, Yoli Yordanov, Boyan Dunn, Sara-Jane Wintersteiger, Christoph M. Otani, Tomoki Hamadi, Youssef Livesey, Frederick J. Kugler, Hillel |
description | Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex. |
doi_str_mv | 10.1016/j.biosystems.2016.03.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819121776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264716300338</els_id><sourcerecordid>1819121776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EomX5CyhHLgm2kzjOsSAKSAgklrPlZQIuSVxsB5R_T6qyHJnLaEbvzdN8CCUEZwQTdrbKlHVhDBG6kNFpk-E8w4TuoDnhFU15TotdNMc5zlPKimqGDkJY4alKTvbRjFak4hXP52i5GKLrZASTPI59fIVgQyJ7kyx62Y6bwTXJ46eN-tX2L8kV9JA8wMvQyuj8mNxB_HT-LRyhvUa2AY6_-yF6Xl4-XVynt_dXNxeL21QXtIiplNw0Feiy5MyUdQOGMUmJ4QY4VUorUmJgShdMyQJyXMpaqZJDXdKCaCXzQ3S6vbv27n2AEEVng4a2lT24IQjCSU0oqSo2SflWqr0LwUMj1t520o-CYLGhKFbij6LYUBQ4FxPFyXrynTKoDsyv8QfbJDjfCmD69cOCF0Fb6DUY60FHYZz9P-ULUueKcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819121776</pqid></control><display><type>article</type><title>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</title><source>ScienceDirect Journals</source><creator>Shavit, Yoli ; Yordanov, Boyan ; Dunn, Sara-Jane ; Wintersteiger, Christoph M. ; Otani, Tomoki ; Hamadi, Youssef ; Livesey, Frederick J. ; Kugler, Hillel</creator><creatorcontrib>Shavit, Yoli ; Yordanov, Boyan ; Dunn, Sara-Jane ; Wintersteiger, Christoph M. ; Otani, Tomoki ; Hamadi, Youssef ; Livesey, Frederick J. ; Kugler, Hillel</creatorcontrib><description>Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2016.03.012</identifier><identifier>PMID: 27178783</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Animals ; Biological modelling ; Boolean networks (BNs) ; Cell Differentiation - genetics ; Cell fate ; Computational Biology - methods ; Computer Simulation ; Gene regulatory networks (GRNs) ; Gene Regulatory Networks - genetics ; Humans ; Mammalian cortex ; Models, Genetic ; Nerve Net - metabolism ; Neurons - cytology ; Neurons - metabolism ; Satisfiability Modulo Theories (SMT) ; Self-modifying code ; Synthesis</subject><ispartof>BioSystems, 2016-08, Vol.146, p.26-34</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</citedby><cites>FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27178783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shavit, Yoli</creatorcontrib><creatorcontrib>Yordanov, Boyan</creatorcontrib><creatorcontrib>Dunn, Sara-Jane</creatorcontrib><creatorcontrib>Wintersteiger, Christoph M.</creatorcontrib><creatorcontrib>Otani, Tomoki</creatorcontrib><creatorcontrib>Hamadi, Youssef</creatorcontrib><creatorcontrib>Livesey, Frederick J.</creatorcontrib><creatorcontrib>Kugler, Hillel</creatorcontrib><title>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological modelling</subject><subject>Boolean networks (BNs)</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Gene regulatory networks (GRNs)</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Humans</subject><subject>Mammalian cortex</subject><subject>Models, Genetic</subject><subject>Nerve Net - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Satisfiability Modulo Theories (SMT)</subject><subject>Self-modifying code</subject><subject>Synthesis</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQhS0EomX5CyhHLgm2kzjOsSAKSAgklrPlZQIuSVxsB5R_T6qyHJnLaEbvzdN8CCUEZwQTdrbKlHVhDBG6kNFpk-E8w4TuoDnhFU15TotdNMc5zlPKimqGDkJY4alKTvbRjFak4hXP52i5GKLrZASTPI59fIVgQyJ7kyx62Y6bwTXJ46eN-tX2L8kV9JA8wMvQyuj8mNxB_HT-LRyhvUa2AY6_-yF6Xl4-XVynt_dXNxeL21QXtIiplNw0Feiy5MyUdQOGMUmJ4QY4VUorUmJgShdMyQJyXMpaqZJDXdKCaCXzQ3S6vbv27n2AEEVng4a2lT24IQjCSU0oqSo2SflWqr0LwUMj1t520o-CYLGhKFbij6LYUBQ4FxPFyXrynTKoDsyv8QfbJDjfCmD69cOCF0Fb6DUY60FHYZz9P-ULUueKcQ</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Shavit, Yoli</creator><creator>Yordanov, Boyan</creator><creator>Dunn, Sara-Jane</creator><creator>Wintersteiger, Christoph M.</creator><creator>Otani, Tomoki</creator><creator>Hamadi, Youssef</creator><creator>Livesey, Frederick J.</creator><creator>Kugler, Hillel</creator><general>Elsevier Ireland Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</title><author>Shavit, Yoli ; Yordanov, Boyan ; Dunn, Sara-Jane ; Wintersteiger, Christoph M. ; Otani, Tomoki ; Hamadi, Youssef ; Livesey, Frederick J. ; Kugler, Hillel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological modelling</topic><topic>Boolean networks (BNs)</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Gene regulatory networks (GRNs)</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Humans</topic><topic>Mammalian cortex</topic><topic>Models, Genetic</topic><topic>Nerve Net - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Satisfiability Modulo Theories (SMT)</topic><topic>Self-modifying code</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shavit, Yoli</creatorcontrib><creatorcontrib>Yordanov, Boyan</creatorcontrib><creatorcontrib>Dunn, Sara-Jane</creatorcontrib><creatorcontrib>Wintersteiger, Christoph M.</creatorcontrib><creatorcontrib>Otani, Tomoki</creatorcontrib><creatorcontrib>Hamadi, Youssef</creatorcontrib><creatorcontrib>Livesey, Frederick J.</creatorcontrib><creatorcontrib>Kugler, Hillel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shavit, Yoli</au><au>Yordanov, Boyan</au><au>Dunn, Sara-Jane</au><au>Wintersteiger, Christoph M.</au><au>Otani, Tomoki</au><au>Hamadi, Youssef</au><au>Livesey, Frederick J.</au><au>Kugler, Hillel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Synthesis and Analysis of Switching Gene Regulatory Networks</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2016-08</date><risdate>2016</risdate><volume>146</volume><spage>26</spage><epage>34</epage><pages>26-34</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>Studying the gene regulatory networks (GRNs) that govern how cells change into specific cell types with unique roles throughout development is an active area of experimental research. The fate specification process can be viewed as a biological program prescribing the system dynamics, governed by a network of genetic interactions. To investigate the possibility that GRNs are not fixed but rather change their topology, for example as cells progress through commitment, we introduce the concept of Switching Gene Regulatory Networks (SGRNs) to enable the modelling and analysis of network reconfiguration. We define the synthesis problem of constructing SGRNs that are guaranteed to satisfy a set of constraints representing experimental observations of cell behaviour. We propose a solution to this problem that employs methods based upon Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility and scalability of our approach by considering a set of synthetic benchmarks exhibiting possible biological behaviour of cell development. We outline how our approach is applied to a more realistic biological system, by considering a simplified network involved in the processes of neuron maturation and fate specification in the mammalian cortex.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>27178783</pmid><doi>10.1016/j.biosystems.2016.03.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2016-08, Vol.146, p.26-34 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_proquest_miscellaneous_1819121776 |
source | ScienceDirect Journals |
subjects | Algorithms Animals Biological modelling Boolean networks (BNs) Cell Differentiation - genetics Cell fate Computational Biology - methods Computer Simulation Gene regulatory networks (GRNs) Gene Regulatory Networks - genetics Humans Mammalian cortex Models, Genetic Nerve Net - metabolism Neurons - cytology Neurons - metabolism Satisfiability Modulo Theories (SMT) Self-modifying code Synthesis |
title | Automated Synthesis and Analysis of Switching Gene Regulatory Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Synthesis%20and%20Analysis%20of%20Switching%20Gene%20Regulatory%20Networks&rft.jtitle=BioSystems&rft.au=Shavit,%20Yoli&rft.date=2016-08&rft.volume=146&rft.spage=26&rft.epage=34&rft.pages=26-34&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2016.03.012&rft_dat=%3Cproquest_cross%3E1819121776%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-aa8df7ec5586d59fed66a21d8de82bbcb150e6bc46ba4e305a9bb58e95241cba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1819121776&rft_id=info:pmid/27178783&rfr_iscdi=true |