Loading…

Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis

Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calcu...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2016-09, Vol.76, p.113-119
Main Author: Isler, Yalcin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83
cites cdi_FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83
container_end_page 119
container_issue
container_start_page 113
container_title Computers in biology and medicine
container_volume 76
creator Isler, Yalcin
description Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calculated in four different ways with optional normalization methods of heart rate and data. The nearest neighbor and the multi-layer perceptron (MLP) are used to evaluate the performances in discriminating these two groups. The results point out that using both data and heart rate normalizations enhances the classifier performance. The maximum accuracy is obtained as 96.43% with MLP classifier.
doi_str_mv 10.1016/j.compbiomed.2016.06.029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1819142671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482516301755</els_id><sourcerecordid>1819142671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7jj6FyTgxUuP-ep090VYd9QVRhRXvYZ0Ui0Ze5IxSQv97007syzsaaEgJHmqinrfQghTsqGEyjf7jQmHY-_CAeyGlZcNKcG6R2hF26arSM3FY7QihJJKtKy-QM9S2hNCBOHkKbpgjWCCNmyFpq1LJrqD8zq74HEY8M2cchidwdpbvHX6fNvOaZi8WaiEp-T8L_x5GrOrdnqGiL9CNHDMsdRwHl-Djhl_0xnwTx2d7t3o8owvvR7n5NJz9GTQY4IX53ONfnx4__3qutp9-fjp6nJXGdGRXNW15bJppK3bXrIWqAE5AG85bWRPaKM1N9raRgre0Q4stWbooO-YHqwR0PI1en2qe4zhzwQpq0MZF8ZRewhTUrSlHRVMNvQhaC0LLhb01T10H6ZYRvtPSUZpU3Reo_ZEmRhSijCoY9FZx1lRohYX1V7duagWFxUpwbqS-vLcYOqXv9vEW9sK8O4EQBHvr4OoknHgDVgXwWRlg3tIl7f3ipjReWf0-BtmSHczqcQUUTfLNi3LRCUv2tc1_weLLcjr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816211740</pqid></control><display><type>article</type><title>Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis</title><source>ScienceDirect Freedom Collection</source><creator>Isler, Yalcin</creator><creatorcontrib>Isler, Yalcin</creatorcontrib><description>Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calculated in four different ways with optional normalization methods of heart rate and data. The nearest neighbor and the multi-layer perceptron (MLP) are used to evaluate the performances in discriminating these two groups. The results point out that using both data and heart rate normalizations enhances the classifier performance. The maximum accuracy is obtained as 96.43% with MLP classifier.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2016.06.029</identifier><identifier>PMID: 27424172</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Algorithms ; Diabetic neuropathy ; Discrimination ; Electrocardiography, Ambulatory ; Entropy ; Female ; Heart attacks ; Heart failure ; Heart Failure - classification ; Heart Failure - physiopathology ; Heart rate ; Heart Rate - physiology ; Heart rate variability ; Humans ; Internal Medicine ; Male ; Middle Aged ; Multi-layer perceptron ; Nearest neighbor ; Neural Networks (Computer) ; Normalization ; Other ; Patients ; Short term ; Studies ; Ultrasonic imaging ; Young Adult</subject><ispartof>Computers in biology and medicine, 2016-09, Vol.76, p.113-119</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 01, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83</citedby><cites>FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27424172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isler, Yalcin</creatorcontrib><title>Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calculated in four different ways with optional normalization methods of heart rate and data. The nearest neighbor and the multi-layer perceptron (MLP) are used to evaluate the performances in discriminating these two groups. The results point out that using both data and heart rate normalizations enhances the classifier performance. The maximum accuracy is obtained as 96.43% with MLP classifier.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Diabetic neuropathy</subject><subject>Discrimination</subject><subject>Electrocardiography, Ambulatory</subject><subject>Entropy</subject><subject>Female</subject><subject>Heart attacks</subject><subject>Heart failure</subject><subject>Heart Failure - classification</subject><subject>Heart Failure - physiopathology</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Heart rate variability</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multi-layer perceptron</subject><subject>Nearest neighbor</subject><subject>Neural Networks (Computer)</subject><subject>Normalization</subject><subject>Other</subject><subject>Patients</subject><subject>Short term</subject><subject>Studies</subject><subject>Ultrasonic imaging</subject><subject>Young Adult</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkk2LFDEQhoMo7jj6FyTgxUuP-ep090VYd9QVRhRXvYZ0Ui0Ze5IxSQv97007syzsaaEgJHmqinrfQghTsqGEyjf7jQmHY-_CAeyGlZcNKcG6R2hF26arSM3FY7QihJJKtKy-QM9S2hNCBOHkKbpgjWCCNmyFpq1LJrqD8zq74HEY8M2cchidwdpbvHX6fNvOaZi8WaiEp-T8L_x5GrOrdnqGiL9CNHDMsdRwHl-Djhl_0xnwTx2d7t3o8owvvR7n5NJz9GTQY4IX53ONfnx4__3qutp9-fjp6nJXGdGRXNW15bJppK3bXrIWqAE5AG85bWRPaKM1N9raRgre0Q4stWbooO-YHqwR0PI1en2qe4zhzwQpq0MZF8ZRewhTUrSlHRVMNvQhaC0LLhb01T10H6ZYRvtPSUZpU3Reo_ZEmRhSijCoY9FZx1lRohYX1V7duagWFxUpwbqS-vLcYOqXv9vEW9sK8O4EQBHvr4OoknHgDVgXwWRlg3tIl7f3ipjReWf0-BtmSHczqcQUUTfLNi3LRCUv2tc1_weLLcjr</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Isler, Yalcin</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160901</creationdate><title>Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis</title><author>Isler, Yalcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Diabetic neuropathy</topic><topic>Discrimination</topic><topic>Electrocardiography, Ambulatory</topic><topic>Entropy</topic><topic>Female</topic><topic>Heart attacks</topic><topic>Heart failure</topic><topic>Heart Failure - classification</topic><topic>Heart Failure - physiopathology</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Heart rate variability</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multi-layer perceptron</topic><topic>Nearest neighbor</topic><topic>Neural Networks (Computer)</topic><topic>Normalization</topic><topic>Other</topic><topic>Patients</topic><topic>Short term</topic><topic>Studies</topic><topic>Ultrasonic imaging</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isler, Yalcin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isler, Yalcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>76</volume><spage>113</spage><epage>119</epage><pages>113-119</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calculated in four different ways with optional normalization methods of heart rate and data. The nearest neighbor and the multi-layer perceptron (MLP) are used to evaluate the performances in discriminating these two groups. The results point out that using both data and heart rate normalizations enhances the classifier performance. The maximum accuracy is obtained as 96.43% with MLP classifier.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27424172</pmid><doi>10.1016/j.compbiomed.2016.06.029</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2016-09, Vol.76, p.113-119
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1819142671
source ScienceDirect Freedom Collection
subjects Adult
Aged
Algorithms
Diabetic neuropathy
Discrimination
Electrocardiography, Ambulatory
Entropy
Female
Heart attacks
Heart failure
Heart Failure - classification
Heart Failure - physiopathology
Heart rate
Heart Rate - physiology
Heart rate variability
Humans
Internal Medicine
Male
Middle Aged
Multi-layer perceptron
Nearest neighbor
Neural Networks (Computer)
Normalization
Other
Patients
Short term
Studies
Ultrasonic imaging
Young Adult
title Discrimination of Systolic and Diastolic Dysfunctions using Multi-Layer Perceptron in Heart Rate Variability Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20Systolic%20and%20Diastolic%20Dysfunctions%20using%20Multi-Layer%20Perceptron%20in%20Heart%20Rate%20Variability%20Analysis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Isler,%20Yalcin&rft.date=2016-09-01&rft.volume=76&rft.spage=113&rft.epage=119&rft.pages=113-119&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2016.06.029&rft_dat=%3Cproquest_cross%3E1819142671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-55d36776d58b628e1ce6fe383176b017aa3cadd7643919ed1dcf9eb92afdc4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816211740&rft_id=info:pmid/27424172&rfr_iscdi=true