Loading…

Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair

Poly(ADP-ribosyl)ation (PARylation) of proteins is one of the immediate cell responses to DNA damage and is catalyzed by poly(ADP-ribose) polymerases (PARPs). When bound to damaged DNA, some members of the PARP family are activated and use NAD + as a source of ADP to catalyze synthesis of poly(ADP-r...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology (New York) 2016-07, Vol.50 (4), p.580-595
Main Authors: Khodyreva, S. N., Lavrik, O. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(ADP-ribosyl)ation (PARylation) of proteins is one of the immediate cell responses to DNA damage and is catalyzed by poly(ADP-ribose) polymerases (PARPs). When bound to damaged DNA, some members of the PARP family are activated and use NAD + as a source of ADP to catalyze synthesis of poly(ADP-ribose) (PAR) covalently attached to a target protein. PAR synthesis is considered as a mechanism that provides a local signal of DNA damage and modulates protein functions in response to genotoxic agents. PARP1 is the best-studied protein of the PARP family and is widely known аs a regulator of repair of damaged bases and single-strand nicks. Data are accumulating that PARP1 is additionally involved in double-strand break repair and nucleotide excision repair. The review summarizes the literature data on the role that PARP1 and PARylation play in DNA repair and particularly in base excision repair; original data obtained in our lab are considered in more detail.
ISSN:0026-8933
1608-3245
DOI:10.1134/S0026893316040038