Loading…

Cysteine–Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic–Biological Hybrid System

Tandem “Z-scheme” approaches to solar-to-chemical production afford the ability to independently develop and optimize reductive photocatalysts for CO2 reduction to multicarbon compounds and oxidative photocatalysts for O2 evolution. To connect the two redox processes, molecular redox shuttles, remin...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2016-09, Vol.16 (9), p.5883-5887
Main Authors: Sakimoto, Kelsey K, Zhang, Stephanie J, Yang, Peidong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tandem “Z-scheme” approaches to solar-to-chemical production afford the ability to independently develop and optimize reductive photocatalysts for CO2 reduction to multicarbon compounds and oxidative photocatalysts for O2 evolution. To connect the two redox processes, molecular redox shuttles, reminiscent of biological electron transfer, offer an additional level of facile chemical tunability that eliminates the need for solid-state semiconductor junction engineering. In this work, we report a tandem inorganic–biological hybrid system capable of oxygenic photosynthesis of acetic acid from CO2. The photoreductive catalyst consists of the bacterium Moorella thermoacetica self-photosensitized with CdS nanoparticles at the expense of the thiol amino acid cysteine (Cys) oxidation to the disulfide form cystine (CySS). To regenerate the CySS/Cys redox shuttle, the photooxidative catalyst, TiO2 loaded with cocatalyst Mn­(II) phthalocyanine (MnPc), couples water oxidation to CySS reduction. The combined system M. thermoacetica–CdS + TiO2–MnPc demonstrates a potential biomimetic approach to complete oxygenic solar-to-chemical production.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b02740