Loading…

Variational data assimilation with moist threshold processes using the NMC spectral model

ABSTRACT This paper describes a detailed study of variational 4‐D data assimilation including the physical processes of large‐scale precipitation and deep cumulus convection. The length of the assimilation window is 6 h, and the data are NMC's operational analyses. A comparison of the minimizat...

Full description

Saved in:
Bibliographic Details
Published in:Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 1993-10, Vol.45 (5), p.370-387
Main Authors: ZOU, XIAOLEI, NAVON, I. M., SELA, J. G.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3634-edfa9c0ffa7200966cec251482de3c1b7e0a5e4bdf04790517ba95223b2719d63
cites
container_end_page 387
container_issue 5
container_start_page 370
container_title Tellus. Series A, Dynamic meteorology and oceanography
container_volume 45
creator ZOU, XIAOLEI
NAVON, I. M.
SELA, J. G.
description ABSTRACT This paper describes a detailed study of variational 4‐D data assimilation including the physical processes of large‐scale precipitation and deep cumulus convection. The length of the assimilation window is 6 h, and the data are NMC's operational analyses. A comparison of the minimization behaviour, the computational complexity, the quality of the retrieved initial state, with and without physical processes is presented. The results demonstrate the ability to perform 4‐D variational data assimilation with discontinuous physical processes. The experiments are carried out with the NMC global spectral model in a resolution of 18 layers in the vertical and a 40 wave triangular truncation.
doi_str_mv 10.1034/j.1600-0870.1993.t01-4-00004.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18217023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18217023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3634-edfa9c0ffa7200966cec251482de3c1b7e0a5e4bdf04790517ba95223b2719d63</originalsourceid><addsrcrecordid>eNqVkMtOwzAQRS0EEuXxD151lzJ-JKk3SKg8pQKbgsTKcp0JdZU0JZOq7d_jUMSe2czozp2r0WFsKGAkQOmr5UhkAAmM8ygYo0YdiEQnEEuPdkds8Lc-ZgOQY0gybdJTdka0jB5hMjVgH--uDa4LzcpVvHCd444o1KH60fg2dAteN4E63i1apEVTFXzdNh6JkPiGwuozbpC_PE84rdF3bcypmwKrC3ZSuorw8refs7f7u9nkMZm-PjxNbqaJV5nSCRalMx7K0uUSwGSZRy9ToceyQOXFPEdwKep5UYLODaQinzuTSqnmMhemyNQ5Gx5y41tfG6TO1oE8VpVbYbMhK8ZS5CBVNF4fjL5tiFos7boNtWv3VoDtidql7ZHZHpntidpI1Gr7Q9TuYsDtIWAbKtz_89rO7qY3_ai-AdDDgMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18217023</pqid></control><display><type>article</type><title>Variational data assimilation with moist threshold processes using the NMC spectral model</title><source>Taylor &amp; Francis Journals</source><creator>ZOU, XIAOLEI ; NAVON, I. M. ; SELA, J. G.</creator><creatorcontrib>ZOU, XIAOLEI ; NAVON, I. M. ; SELA, J. G.</creatorcontrib><description>ABSTRACT This paper describes a detailed study of variational 4‐D data assimilation including the physical processes of large‐scale precipitation and deep cumulus convection. The length of the assimilation window is 6 h, and the data are NMC's operational analyses. A comparison of the minimization behaviour, the computational complexity, the quality of the retrieved initial state, with and without physical processes is presented. The results demonstrate the ability to perform 4‐D variational data assimilation with discontinuous physical processes. The experiments are carried out with the NMC global spectral model in a resolution of 18 layers in the vertical and a 40 wave triangular truncation.</description><identifier>ISSN: 0280-6495</identifier><identifier>EISSN: 1600-0870</identifier><identifier>DOI: 10.1034/j.1600-0870.1993.t01-4-00004.x</identifier><language>eng</language><publisher>Copenhagen, DK: Blackwell Munksgaard</publisher><ispartof>Tellus. Series A, Dynamic meteorology and oceanography, 1993-10, Vol.45 (5), p.370-387</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3634-edfa9c0ffa7200966cec251482de3c1b7e0a5e4bdf04790517ba95223b2719d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>ZOU, XIAOLEI</creatorcontrib><creatorcontrib>NAVON, I. M.</creatorcontrib><creatorcontrib>SELA, J. G.</creatorcontrib><title>Variational data assimilation with moist threshold processes using the NMC spectral model</title><title>Tellus. Series A, Dynamic meteorology and oceanography</title><description>ABSTRACT This paper describes a detailed study of variational 4‐D data assimilation including the physical processes of large‐scale precipitation and deep cumulus convection. The length of the assimilation window is 6 h, and the data are NMC's operational analyses. A comparison of the minimization behaviour, the computational complexity, the quality of the retrieved initial state, with and without physical processes is presented. The results demonstrate the ability to perform 4‐D variational data assimilation with discontinuous physical processes. The experiments are carried out with the NMC global spectral model in a resolution of 18 layers in the vertical and a 40 wave triangular truncation.</description><issn>0280-6495</issn><issn>1600-0870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqVkMtOwzAQRS0EEuXxD151lzJ-JKk3SKg8pQKbgsTKcp0JdZU0JZOq7d_jUMSe2czozp2r0WFsKGAkQOmr5UhkAAmM8ygYo0YdiEQnEEuPdkds8Lc-ZgOQY0gybdJTdka0jB5hMjVgH--uDa4LzcpVvHCd444o1KH60fg2dAteN4E63i1apEVTFXzdNh6JkPiGwuozbpC_PE84rdF3bcypmwKrC3ZSuorw8refs7f7u9nkMZm-PjxNbqaJV5nSCRalMx7K0uUSwGSZRy9ToceyQOXFPEdwKep5UYLODaQinzuTSqnmMhemyNQ5Gx5y41tfG6TO1oE8VpVbYbMhK8ZS5CBVNF4fjL5tiFos7boNtWv3VoDtidql7ZHZHpntidpI1Gr7Q9TuYsDtIWAbKtz_89rO7qY3_ai-AdDDgMU</recordid><startdate>199310</startdate><enddate>199310</enddate><creator>ZOU, XIAOLEI</creator><creator>NAVON, I. M.</creator><creator>SELA, J. G.</creator><general>Blackwell Munksgaard</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199310</creationdate><title>Variational data assimilation with moist threshold processes using the NMC spectral model</title><author>ZOU, XIAOLEI ; NAVON, I. M. ; SELA, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3634-edfa9c0ffa7200966cec251482de3c1b7e0a5e4bdf04790517ba95223b2719d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZOU, XIAOLEI</creatorcontrib><creatorcontrib>NAVON, I. M.</creatorcontrib><creatorcontrib>SELA, J. G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Tellus. Series A, Dynamic meteorology and oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOU, XIAOLEI</au><au>NAVON, I. M.</au><au>SELA, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational data assimilation with moist threshold processes using the NMC spectral model</atitle><jtitle>Tellus. Series A, Dynamic meteorology and oceanography</jtitle><date>1993-10</date><risdate>1993</risdate><volume>45</volume><issue>5</issue><spage>370</spage><epage>387</epage><pages>370-387</pages><issn>0280-6495</issn><eissn>1600-0870</eissn><abstract>ABSTRACT This paper describes a detailed study of variational 4‐D data assimilation including the physical processes of large‐scale precipitation and deep cumulus convection. The length of the assimilation window is 6 h, and the data are NMC's operational analyses. A comparison of the minimization behaviour, the computational complexity, the quality of the retrieved initial state, with and without physical processes is presented. The results demonstrate the ability to perform 4‐D variational data assimilation with discontinuous physical processes. The experiments are carried out with the NMC global spectral model in a resolution of 18 layers in the vertical and a 40 wave triangular truncation.</abstract><cop>Copenhagen, DK</cop><pub>Blackwell Munksgaard</pub><doi>10.1034/j.1600-0870.1993.t01-4-00004.x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0280-6495
ispartof Tellus. Series A, Dynamic meteorology and oceanography, 1993-10, Vol.45 (5), p.370-387
issn 0280-6495
1600-0870
language eng
recordid cdi_proquest_miscellaneous_18217023
source Taylor & Francis Journals
title Variational data assimilation with moist threshold processes using the NMC spectral model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20data%20assimilation%20with%20moist%20threshold%20processes%20using%20the%20NMC%20spectral%20model&rft.jtitle=Tellus.%20Series%20A,%20Dynamic%20meteorology%20and%20oceanography&rft.au=ZOU,%20XIAOLEI&rft.date=1993-10&rft.volume=45&rft.issue=5&rft.spage=370&rft.epage=387&rft.pages=370-387&rft.issn=0280-6495&rft.eissn=1600-0870&rft_id=info:doi/10.1034/j.1600-0870.1993.t01-4-00004.x&rft_dat=%3Cproquest_cross%3E18217023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3634-edfa9c0ffa7200966cec251482de3c1b7e0a5e4bdf04790517ba95223b2719d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18217023&rft_id=info:pmid/&rfr_iscdi=true