Loading…

In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies

CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) inter...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology ecology 2016-11, Vol.92 (11), p.1
Main Authors: Lawrence, J. R., Swerhone, G. D. W., Kuhlicke, U., Neu, T. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3
cites cdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3
container_end_page
container_issue 11
container_start_page 1
container_title FEMS microbiology ecology
container_volume 92
creator Lawrence, J. R.
Swerhone, G. D. W.
Kuhlicke, U.
Neu, T. R.
description CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to
doi_str_mv 10.1093/femsec/fiw183
format article
fullrecord <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1821792980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708718466</galeid><oup_id>10.1093/femsec/fiw183</oup_id><sourcerecordid>A708718466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxYMotlaXbiXgxs20uTOTSbIsxY9CwU33IZPc2JSZ5Jlk1P735vFaqyJIILmE3zncew8hr4GdAlPDmce1oD3z4TvI4Qk5Bi7GblIjPP2tPiIvSrllDPgwsufkqBd86oXgx6ReRlpC3Sh-Cw6jRepTpitWM6clWGqio_YG12DNQtudk0urCbHQEGm9QVpq3mzdMjq6S8vdik1tag4_aPJ0NrZiDg9Sm5YUA5aX5Jk3S8FX9-8Juf7w_vriU3f1-ePlxflVZ8ceageD4CDENKpeztaxeTKMG6VG6xn2HqFX3Ain5pFb57jiSoJEAbNgDJ0dTsi7g-0up68blqrXUCwui4mYtqJB9iBUryRr6Nu_0Nu05dia06AU40IJyR-pL2ZBHaJPNRu7N9XngkkBcpymRp3-g2rH7deYIvrQ_v8QdAdBW1EpGb3e5bCafKeB6X3I-hCyPoTc-Df3zW7ziu4X_ZDq4-Bp2_3H6yenYLIh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990579785</pqid></control><display><type>article</type><title>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</title><source>Oxford Academic Journals (Open Access)</source><creator>Lawrence, J. R. ; Swerhone, G. D. W. ; Kuhlicke, U. ; Neu, T. R.</creator><contributor>Nakatsu, Cindy</contributor><creatorcontrib>Lawrence, J. R. ; Swerhone, G. D. W. ; Kuhlicke, U. ; Neu, T. R. ; Nakatsu, Cindy</creatorcontrib><description>CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to &lt;40 nm beads and the outer layer was permeable to &lt;100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function. Fluorescent reporters and CLSM were applied to address the hypothesis that the exopolymeric matrix of microcolonies functions to create a series of microdomains that result in unitary structure and function.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiw183</identifier><identifier>PMID: 27562775</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria ; Beads ; Betaproteobacteria - enzymology ; Betaproteobacteria - metabolism ; Betaproteobacteria - physiology ; Biofilms - growth &amp; development ; Cell Membrane - chemistry ; Cell surface ; Cellular Microenvironment - physiology ; Chemical properties ; Chlorides ; Colonies ; Concentration gradient ; Ecology ; Fluorescence ; Fluorescent Dyes ; Fluorescent indicators ; Glucose oxidase ; Membrane Microdomains - chemistry ; Metabolism ; Microbial colonies ; Microbial metabolism ; Microbiological research ; Microbiology ; Microscopy, Confocal ; Nutrients ; Permeability ; pH effects ; Phosphoric Monoester Hydrolases - metabolism ; Physiological aspects ; Polymeric composites ; Polymers ; Polymers - chemistry ; Potassium chloride ; Potassium Cyanide - chemistry ; Rhodamine ; Structure-function relationships</subject><ispartof>FEMS microbiology ecology, 2016-11, Vol.92 (11), p.1</ispartof><rights>FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2016</rights><rights>FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2016 Oxford University Press</rights><rights>Copyright Oxford University Press, UK Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</citedby><cites>FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsec/fiw183$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27562775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nakatsu, Cindy</contributor><creatorcontrib>Lawrence, J. R.</creatorcontrib><creatorcontrib>Swerhone, G. D. W.</creatorcontrib><creatorcontrib>Kuhlicke, U.</creatorcontrib><creatorcontrib>Neu, T. R.</creatorcontrib><title>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to &lt;40 nm beads and the outer layer was permeable to &lt;100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function. Fluorescent reporters and CLSM were applied to address the hypothesis that the exopolymeric matrix of microcolonies functions to create a series of microdomains that result in unitary structure and function.</description><subject>Bacteria</subject><subject>Beads</subject><subject>Betaproteobacteria - enzymology</subject><subject>Betaproteobacteria - metabolism</subject><subject>Betaproteobacteria - physiology</subject><subject>Biofilms - growth &amp; development</subject><subject>Cell Membrane - chemistry</subject><subject>Cell surface</subject><subject>Cellular Microenvironment - physiology</subject><subject>Chemical properties</subject><subject>Chlorides</subject><subject>Colonies</subject><subject>Concentration gradient</subject><subject>Ecology</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Fluorescent indicators</subject><subject>Glucose oxidase</subject><subject>Membrane Microdomains - chemistry</subject><subject>Metabolism</subject><subject>Microbial colonies</subject><subject>Microbial metabolism</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Microscopy, Confocal</subject><subject>Nutrients</subject><subject>Permeability</subject><subject>pH effects</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Physiological aspects</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Potassium chloride</subject><subject>Potassium Cyanide - chemistry</subject><subject>Rhodamine</subject><subject>Structure-function relationships</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rFTEUxYMotlaXbiXgxs20uTOTSbIsxY9CwU33IZPc2JSZ5Jlk1P735vFaqyJIILmE3zncew8hr4GdAlPDmce1oD3z4TvI4Qk5Bi7GblIjPP2tPiIvSrllDPgwsufkqBd86oXgx6ReRlpC3Sh-Cw6jRepTpitWM6clWGqio_YG12DNQtudk0urCbHQEGm9QVpq3mzdMjq6S8vdik1tag4_aPJ0NrZiDg9Sm5YUA5aX5Jk3S8FX9-8Juf7w_vriU3f1-ePlxflVZ8ceageD4CDENKpeztaxeTKMG6VG6xn2HqFX3Ain5pFb57jiSoJEAbNgDJ0dTsi7g-0up68blqrXUCwui4mYtqJB9iBUryRr6Nu_0Nu05dia06AU40IJyR-pL2ZBHaJPNRu7N9XngkkBcpymRp3-g2rH7deYIvrQ_v8QdAdBW1EpGb3e5bCafKeB6X3I-hCyPoTc-Df3zW7ziu4X_ZDq4-Bp2_3H6yenYLIh</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Lawrence, J. R.</creator><creator>Swerhone, G. D. W.</creator><creator>Kuhlicke, U.</creator><creator>Neu, T. R.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</title><author>Lawrence, J. R. ; Swerhone, G. D. W. ; Kuhlicke, U. ; Neu, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria</topic><topic>Beads</topic><topic>Betaproteobacteria - enzymology</topic><topic>Betaproteobacteria - metabolism</topic><topic>Betaproteobacteria - physiology</topic><topic>Biofilms - growth &amp; development</topic><topic>Cell Membrane - chemistry</topic><topic>Cell surface</topic><topic>Cellular Microenvironment - physiology</topic><topic>Chemical properties</topic><topic>Chlorides</topic><topic>Colonies</topic><topic>Concentration gradient</topic><topic>Ecology</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Fluorescent indicators</topic><topic>Glucose oxidase</topic><topic>Membrane Microdomains - chemistry</topic><topic>Metabolism</topic><topic>Microbial colonies</topic><topic>Microbial metabolism</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Microscopy, Confocal</topic><topic>Nutrients</topic><topic>Permeability</topic><topic>pH effects</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Physiological aspects</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Potassium chloride</topic><topic>Potassium Cyanide - chemistry</topic><topic>Rhodamine</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, J. R.</creatorcontrib><creatorcontrib>Swerhone, G. D. W.</creatorcontrib><creatorcontrib>Kuhlicke, U.</creatorcontrib><creatorcontrib>Neu, T. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lawrence, J. R.</au><au>Swerhone, G. D. W.</au><au>Kuhlicke, U.</au><au>Neu, T. R.</au><au>Nakatsu, Cindy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>92</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to &lt;40 nm beads and the outer layer was permeable to &lt;100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function. Fluorescent reporters and CLSM were applied to address the hypothesis that the exopolymeric matrix of microcolonies functions to create a series of microdomains that result in unitary structure and function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27562775</pmid><doi>10.1093/femsec/fiw183</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1574-6941
ispartof FEMS microbiology ecology, 2016-11, Vol.92 (11), p.1
issn 1574-6941
0168-6496
1574-6941
language eng
recordid cdi_proquest_miscellaneous_1821792980
source Oxford Academic Journals (Open Access)
subjects Bacteria
Beads
Betaproteobacteria - enzymology
Betaproteobacteria - metabolism
Betaproteobacteria - physiology
Biofilms - growth & development
Cell Membrane - chemistry
Cell surface
Cellular Microenvironment - physiology
Chemical properties
Chlorides
Colonies
Concentration gradient
Ecology
Fluorescence
Fluorescent Dyes
Fluorescent indicators
Glucose oxidase
Membrane Microdomains - chemistry
Metabolism
Microbial colonies
Microbial metabolism
Microbiological research
Microbiology
Microscopy, Confocal
Nutrients
Permeability
pH effects
Phosphoric Monoester Hydrolases - metabolism
Physiological aspects
Polymeric composites
Polymers
Polymers - chemistry
Potassium chloride
Potassium Cyanide - chemistry
Rhodamine
Structure-function relationships
title In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20evidence%20for%20metabolic%20and%20chemical%20microdomains%20in%20the%20structured%20polymer%20matrix%20of%20bacterial%20microcolonies&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Lawrence,%20J.%20R.&rft.date=2016-11-01&rft.volume=92&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiw183&rft_dat=%3Cgale_TOX%3EA708718466%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1990579785&rft_id=info:pmid/27562775&rft_galeid=A708718466&rft_oup_id=10.1093/femsec/fiw183&rfr_iscdi=true