Loading…
In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies
CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) inter...
Saved in:
Published in: | FEMS microbiology ecology 2016-11, Vol.92 (11), p.1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3 |
container_end_page | |
container_issue | 11 |
container_start_page | 1 |
container_title | FEMS microbiology ecology |
container_volume | 92 |
creator | Lawrence, J. R. Swerhone, G. D. W. Kuhlicke, U. Neu, T. R. |
description | CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to |
doi_str_mv | 10.1093/femsec/fiw183 |
format | article |
fullrecord | <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1821792980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708718466</galeid><oup_id>10.1093/femsec/fiw183</oup_id><sourcerecordid>A708718466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxYMotlaXbiXgxs20uTOTSbIsxY9CwU33IZPc2JSZ5Jlk1P735vFaqyJIILmE3zncew8hr4GdAlPDmce1oD3z4TvI4Qk5Bi7GblIjPP2tPiIvSrllDPgwsufkqBd86oXgx6ReRlpC3Sh-Cw6jRepTpitWM6clWGqio_YG12DNQtudk0urCbHQEGm9QVpq3mzdMjq6S8vdik1tag4_aPJ0NrZiDg9Sm5YUA5aX5Jk3S8FX9-8Juf7w_vriU3f1-ePlxflVZ8ceageD4CDENKpeztaxeTKMG6VG6xn2HqFX3Ain5pFb57jiSoJEAbNgDJ0dTsi7g-0up68blqrXUCwui4mYtqJB9iBUryRr6Nu_0Nu05dia06AU40IJyR-pL2ZBHaJPNRu7N9XngkkBcpymRp3-g2rH7deYIvrQ_v8QdAdBW1EpGb3e5bCafKeB6X3I-hCyPoTc-Df3zW7ziu4X_ZDq4-Bp2_3H6yenYLIh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990579785</pqid></control><display><type>article</type><title>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</title><source>Oxford Academic Journals (Open Access)</source><creator>Lawrence, J. R. ; Swerhone, G. D. W. ; Kuhlicke, U. ; Neu, T. R.</creator><contributor>Nakatsu, Cindy</contributor><creatorcontrib>Lawrence, J. R. ; Swerhone, G. D. W. ; Kuhlicke, U. ; Neu, T. R. ; Nakatsu, Cindy</creatorcontrib><description>CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to <40 nm beads and the outer layer was permeable to <100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function.
Fluorescent reporters and CLSM were applied to address the hypothesis that the exopolymeric matrix of microcolonies functions to create a series of microdomains that result in unitary structure and function.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiw183</identifier><identifier>PMID: 27562775</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria ; Beads ; Betaproteobacteria - enzymology ; Betaproteobacteria - metabolism ; Betaproteobacteria - physiology ; Biofilms - growth & development ; Cell Membrane - chemistry ; Cell surface ; Cellular Microenvironment - physiology ; Chemical properties ; Chlorides ; Colonies ; Concentration gradient ; Ecology ; Fluorescence ; Fluorescent Dyes ; Fluorescent indicators ; Glucose oxidase ; Membrane Microdomains - chemistry ; Metabolism ; Microbial colonies ; Microbial metabolism ; Microbiological research ; Microbiology ; Microscopy, Confocal ; Nutrients ; Permeability ; pH effects ; Phosphoric Monoester Hydrolases - metabolism ; Physiological aspects ; Polymeric composites ; Polymers ; Polymers - chemistry ; Potassium chloride ; Potassium Cyanide - chemistry ; Rhodamine ; Structure-function relationships</subject><ispartof>FEMS microbiology ecology, 2016-11, Vol.92 (11), p.1</ispartof><rights>FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2016</rights><rights>FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2016 Oxford University Press</rights><rights>Copyright Oxford University Press, UK Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</citedby><cites>FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsec/fiw183$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27562775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nakatsu, Cindy</contributor><creatorcontrib>Lawrence, J. R.</creatorcontrib><creatorcontrib>Swerhone, G. D. W.</creatorcontrib><creatorcontrib>Kuhlicke, U.</creatorcontrib><creatorcontrib>Neu, T. R.</creatorcontrib><title>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to <40 nm beads and the outer layer was permeable to <100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function.
Fluorescent reporters and CLSM were applied to address the hypothesis that the exopolymeric matrix of microcolonies functions to create a series of microdomains that result in unitary structure and function.</description><subject>Bacteria</subject><subject>Beads</subject><subject>Betaproteobacteria - enzymology</subject><subject>Betaproteobacteria - metabolism</subject><subject>Betaproteobacteria - physiology</subject><subject>Biofilms - growth & development</subject><subject>Cell Membrane - chemistry</subject><subject>Cell surface</subject><subject>Cellular Microenvironment - physiology</subject><subject>Chemical properties</subject><subject>Chlorides</subject><subject>Colonies</subject><subject>Concentration gradient</subject><subject>Ecology</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Fluorescent indicators</subject><subject>Glucose oxidase</subject><subject>Membrane Microdomains - chemistry</subject><subject>Metabolism</subject><subject>Microbial colonies</subject><subject>Microbial metabolism</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Microscopy, Confocal</subject><subject>Nutrients</subject><subject>Permeability</subject><subject>pH effects</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Physiological aspects</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Potassium chloride</subject><subject>Potassium Cyanide - chemistry</subject><subject>Rhodamine</subject><subject>Structure-function relationships</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rFTEUxYMotlaXbiXgxs20uTOTSbIsxY9CwU33IZPc2JSZ5Jlk1P735vFaqyJIILmE3zncew8hr4GdAlPDmce1oD3z4TvI4Qk5Bi7GblIjPP2tPiIvSrllDPgwsufkqBd86oXgx6ReRlpC3Sh-Cw6jRepTpitWM6clWGqio_YG12DNQtudk0urCbHQEGm9QVpq3mzdMjq6S8vdik1tag4_aPJ0NrZiDg9Sm5YUA5aX5Jk3S8FX9-8Juf7w_vriU3f1-ePlxflVZ8ceageD4CDENKpeztaxeTKMG6VG6xn2HqFX3Ain5pFb57jiSoJEAbNgDJ0dTsi7g-0up68blqrXUCwui4mYtqJB9iBUryRr6Nu_0Nu05dia06AU40IJyR-pL2ZBHaJPNRu7N9XngkkBcpymRp3-g2rH7deYIvrQ_v8QdAdBW1EpGb3e5bCafKeB6X3I-hCyPoTc-Df3zW7ziu4X_ZDq4-Bp2_3H6yenYLIh</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Lawrence, J. R.</creator><creator>Swerhone, G. D. W.</creator><creator>Kuhlicke, U.</creator><creator>Neu, T. R.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</title><author>Lawrence, J. R. ; Swerhone, G. D. W. ; Kuhlicke, U. ; Neu, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria</topic><topic>Beads</topic><topic>Betaproteobacteria - enzymology</topic><topic>Betaproteobacteria - metabolism</topic><topic>Betaproteobacteria - physiology</topic><topic>Biofilms - growth & development</topic><topic>Cell Membrane - chemistry</topic><topic>Cell surface</topic><topic>Cellular Microenvironment - physiology</topic><topic>Chemical properties</topic><topic>Chlorides</topic><topic>Colonies</topic><topic>Concentration gradient</topic><topic>Ecology</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Fluorescent indicators</topic><topic>Glucose oxidase</topic><topic>Membrane Microdomains - chemistry</topic><topic>Metabolism</topic><topic>Microbial colonies</topic><topic>Microbial metabolism</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Microscopy, Confocal</topic><topic>Nutrients</topic><topic>Permeability</topic><topic>pH effects</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Physiological aspects</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Potassium chloride</topic><topic>Potassium Cyanide - chemistry</topic><topic>Rhodamine</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, J. R.</creatorcontrib><creatorcontrib>Swerhone, G. D. W.</creatorcontrib><creatorcontrib>Kuhlicke, U.</creatorcontrib><creatorcontrib>Neu, T. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lawrence, J. R.</au><au>Swerhone, G. D. W.</au><au>Kuhlicke, U.</au><au>Neu, T. R.</au><au>Nakatsu, Cindy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>92</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to <40 nm beads and the outer layer was permeable to <100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function.
Fluorescent reporters and CLSM were applied to address the hypothesis that the exopolymeric matrix of microcolonies functions to create a series of microdomains that result in unitary structure and function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27562775</pmid><doi>10.1093/femsec/fiw183</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1574-6941 |
ispartof | FEMS microbiology ecology, 2016-11, Vol.92 (11), p.1 |
issn | 1574-6941 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_1821792980 |
source | Oxford Academic Journals (Open Access) |
subjects | Bacteria Beads Betaproteobacteria - enzymology Betaproteobacteria - metabolism Betaproteobacteria - physiology Biofilms - growth & development Cell Membrane - chemistry Cell surface Cellular Microenvironment - physiology Chemical properties Chlorides Colonies Concentration gradient Ecology Fluorescence Fluorescent Dyes Fluorescent indicators Glucose oxidase Membrane Microdomains - chemistry Metabolism Microbial colonies Microbial metabolism Microbiological research Microbiology Microscopy, Confocal Nutrients Permeability pH effects Phosphoric Monoester Hydrolases - metabolism Physiological aspects Polymeric composites Polymers Polymers - chemistry Potassium chloride Potassium Cyanide - chemistry Rhodamine Structure-function relationships |
title | In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20evidence%20for%20metabolic%20and%20chemical%20microdomains%20in%20the%20structured%20polymer%20matrix%20of%20bacterial%20microcolonies&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Lawrence,%20J.%20R.&rft.date=2016-11-01&rft.volume=92&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiw183&rft_dat=%3Cgale_TOX%3EA708718466%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-137517764928bcd0b6a05a994cf0e2fe1295a7d9b45cdd5959818e71b700edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1990579785&rft_id=info:pmid/27562775&rft_galeid=A708718466&rft_oup_id=10.1093/femsec/fiw183&rfr_iscdi=true |