Loading…

Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases

The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2002-01, Vol.315 (3), p.373-384
Main Authors: Mol, Clifford D, Arvai, Andrew S, Begley, Thomas J, Cunningham, Richard P, Tainer, John A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3
cites cdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3
container_end_page 384
container_issue 3
container_start_page 373
container_title Journal of molecular biology
container_volume 315
creator Mol, Clifford D
Arvai, Andrew S
Begley, Thomas J
Cunningham, Richard P
Tainer, John A
description The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.
doi_str_mv 10.1006/jmbi.2001.5264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18221414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283601952647</els_id><sourcerecordid>18221414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EokvhyhH5xC2L7Xgdh1vV8iVVcADOlj2etK7iuNjOolz55STalThxGs3omVczDyGvOdtzxtS7h-jCXjDG9weh5BOy40z3jVatfkp2jAnRCN2qC_KilAfG2KGV-jm54LzTinG9I3--1zxDnTNSO3lqoYZjqAtNA7W03mOOqVTrRlybJYYJm5uvV_RuXCCVZbQF31M8Bo8TIB1Spm4d0fo7lBqmO1oTzRjTEWkMJdoK9-jplHK0I91yNrq8JM8GOxZ8da6X5OfHDz-uPze33z59ub66bUC2XW1sq6RzDkBaP6Dq0XoutRaqcxoAul55L0G4FqWWGnTvteMHxL4D0SO69pK8PeU-5vRrxlLNehTgONoJ01wM10JwyeUK7k8g5FRKxsE85hBtXgxnZrNuNutms2426-vCm3Py7CL6f_hZ8wroE4Drf8eA2RQImzMfMkI1PoX_Zf8FIKWUZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18221414</pqid></control><display><type>article</type><title>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</title><source>Elsevier</source><creator>Mol, Clifford D ; Arvai, Andrew S ; Begley, Thomas J ; Cunningham, Richard P ; Tainer, John A</creator><creatorcontrib>Mol, Clifford D ; Arvai, Andrew S ; Begley, Thomas J ; Cunningham, Richard P ; Tainer, John A</creatorcontrib><description>The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2001.5264</identifier><identifier>PMID: 11786018</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Base Pair Mismatch - genetics ; base twisting ; Binding Sites ; Carbon-Oxygen Lyases - chemistry ; Carbon-Oxygen Lyases - metabolism ; Crystallography, X-Ray ; Deoxyribonuclease (Pyrimidine Dimer) ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA glycosylase ; DNA mismatch ; DNA repair ; DNA Repair - genetics ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endodeoxyribonucleases - chemistry ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Methanobacteriaceae - enzymology ; Methanobacteriaceae - genetics ; methylation ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Nucleic Acid Conformation ; Nucleotides - chemistry ; Nucleotides - genetics ; Nucleotides - metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Sequence Homology, Amino Acid ; Structure-Activity Relationship ; Thermodynamics ; Thymine - metabolism ; thymine-DNA glycosylase</subject><ispartof>Journal of molecular biology, 2002-01, Vol.315 (3), p.373-384</ispartof><rights>2002 Academic Press</rights><rights>Copyright 2002 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</citedby><cites>FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11786018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mol, Clifford D</creatorcontrib><creatorcontrib>Arvai, Andrew S</creatorcontrib><creatorcontrib>Begley, Thomas J</creatorcontrib><creatorcontrib>Cunningham, Richard P</creatorcontrib><creatorcontrib>Tainer, John A</creatorcontrib><title>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.</description><subject>Amino Acid Sequence</subject><subject>Base Pair Mismatch - genetics</subject><subject>base twisting</subject><subject>Binding Sites</subject><subject>Carbon-Oxygen Lyases - chemistry</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonuclease (Pyrimidine Dimer)</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA glycosylase</subject><subject>DNA mismatch</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Methanobacteriaceae - enzymology</subject><subject>Methanobacteriaceae - genetics</subject><subject>methylation</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - genetics</subject><subject>Nucleotides - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Thymine - metabolism</subject><subject>thymine-DNA glycosylase</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kE1v1DAQhi0EokvhyhH5xC2L7Xgdh1vV8iVVcADOlj2etK7iuNjOolz55STalThxGs3omVczDyGvOdtzxtS7h-jCXjDG9weh5BOy40z3jVatfkp2jAnRCN2qC_KilAfG2KGV-jm54LzTinG9I3--1zxDnTNSO3lqoYZjqAtNA7W03mOOqVTrRlybJYYJm5uvV_RuXCCVZbQF31M8Bo8TIB1Spm4d0fo7lBqmO1oTzRjTEWkMJdoK9-jplHK0I91yNrq8JM8GOxZ8da6X5OfHDz-uPze33z59ub66bUC2XW1sq6RzDkBaP6Dq0XoutRaqcxoAul55L0G4FqWWGnTvteMHxL4D0SO69pK8PeU-5vRrxlLNehTgONoJ01wM10JwyeUK7k8g5FRKxsE85hBtXgxnZrNuNutms2426-vCm3Py7CL6f_hZ8wroE4Drf8eA2RQImzMfMkI1PoX_Zf8FIKWUZQ</recordid><startdate>20020118</startdate><enddate>20020118</enddate><creator>Mol, Clifford D</creator><creator>Arvai, Andrew S</creator><creator>Begley, Thomas J</creator><creator>Cunningham, Richard P</creator><creator>Tainer, John A</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20020118</creationdate><title>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</title><author>Mol, Clifford D ; Arvai, Andrew S ; Begley, Thomas J ; Cunningham, Richard P ; Tainer, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Base Pair Mismatch - genetics</topic><topic>base twisting</topic><topic>Binding Sites</topic><topic>Carbon-Oxygen Lyases - chemistry</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonuclease (Pyrimidine Dimer)</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA glycosylase</topic><topic>DNA mismatch</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Methanobacteriaceae - enzymology</topic><topic>Methanobacteriaceae - genetics</topic><topic>methylation</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - genetics</topic><topic>Nucleotides - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Thymine - metabolism</topic><topic>thymine-DNA glycosylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mol, Clifford D</creatorcontrib><creatorcontrib>Arvai, Andrew S</creatorcontrib><creatorcontrib>Begley, Thomas J</creatorcontrib><creatorcontrib>Cunningham, Richard P</creatorcontrib><creatorcontrib>Tainer, John A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mol, Clifford D</au><au>Arvai, Andrew S</au><au>Begley, Thomas J</au><au>Cunningham, Richard P</au><au>Tainer, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2002-01-18</date><risdate>2002</risdate><volume>315</volume><issue>3</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>11786018</pmid><doi>10.1006/jmbi.2001.5264</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2002-01, Vol.315 (3), p.373-384
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_18221414
source Elsevier
subjects Amino Acid Sequence
Base Pair Mismatch - genetics
base twisting
Binding Sites
Carbon-Oxygen Lyases - chemistry
Carbon-Oxygen Lyases - metabolism
Crystallography, X-Ray
Deoxyribonuclease (Pyrimidine Dimer)
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA glycosylase
DNA mismatch
DNA repair
DNA Repair - genetics
DNA-(Apurinic or Apyrimidinic Site) Lyase
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endodeoxyribonucleases - chemistry
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Methanobacteriaceae - enzymology
Methanobacteriaceae - genetics
methylation
Models, Molecular
Molecular Sequence Data
Mutation - genetics
Nucleic Acid Conformation
Nucleotides - chemistry
Nucleotides - genetics
Nucleotides - metabolism
Protein Structure, Secondary
Protein Structure, Tertiary
Sequence Alignment
Sequence Homology, Amino Acid
Structure-Activity Relationship
Thermodynamics
Thymine - metabolism
thymine-DNA glycosylase
title Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20activity%20of%20a%20thermostable%20thymine-DNA%20glycosylase:%20evidence%20for%20base%20twisting%20to%20remove%20mismatched%20normal%20DNA%20bases&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Mol,%20Clifford%20D&rft.date=2002-01-18&rft.volume=315&rft.issue=3&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2001.5264&rft_dat=%3Cproquest_cross%3E18221414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18221414&rft_id=info:pmid/11786018&rfr_iscdi=true