Loading…
Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases
The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, w...
Saved in:
Published in: | Journal of molecular biology 2002-01, Vol.315 (3), p.373-384 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3 |
container_end_page | 384 |
container_issue | 3 |
container_start_page | 373 |
container_title | Journal of molecular biology |
container_volume | 315 |
creator | Mol, Clifford D Arvai, Andrew S Begley, Thomas J Cunningham, Richard P Tainer, John A |
description | The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal
anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised. |
doi_str_mv | 10.1006/jmbi.2001.5264 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18221414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283601952647</els_id><sourcerecordid>18221414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EokvhyhH5xC2L7Xgdh1vV8iVVcADOlj2etK7iuNjOolz55STalThxGs3omVczDyGvOdtzxtS7h-jCXjDG9weh5BOy40z3jVatfkp2jAnRCN2qC_KilAfG2KGV-jm54LzTinG9I3--1zxDnTNSO3lqoYZjqAtNA7W03mOOqVTrRlybJYYJm5uvV_RuXCCVZbQF31M8Bo8TIB1Spm4d0fo7lBqmO1oTzRjTEWkMJdoK9-jplHK0I91yNrq8JM8GOxZ8da6X5OfHDz-uPze33z59ub66bUC2XW1sq6RzDkBaP6Dq0XoutRaqcxoAul55L0G4FqWWGnTvteMHxL4D0SO69pK8PeU-5vRrxlLNehTgONoJ01wM10JwyeUK7k8g5FRKxsE85hBtXgxnZrNuNutms2426-vCm3Py7CL6f_hZ8wroE4Drf8eA2RQImzMfMkI1PoX_Zf8FIKWUZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18221414</pqid></control><display><type>article</type><title>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</title><source>Elsevier</source><creator>Mol, Clifford D ; Arvai, Andrew S ; Begley, Thomas J ; Cunningham, Richard P ; Tainer, John A</creator><creatorcontrib>Mol, Clifford D ; Arvai, Andrew S ; Begley, Thomas J ; Cunningham, Richard P ; Tainer, John A</creatorcontrib><description>The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal
anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2001.5264</identifier><identifier>PMID: 11786018</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Base Pair Mismatch - genetics ; base twisting ; Binding Sites ; Carbon-Oxygen Lyases - chemistry ; Carbon-Oxygen Lyases - metabolism ; Crystallography, X-Ray ; Deoxyribonuclease (Pyrimidine Dimer) ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA glycosylase ; DNA mismatch ; DNA repair ; DNA Repair - genetics ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endodeoxyribonucleases - chemistry ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Methanobacteriaceae - enzymology ; Methanobacteriaceae - genetics ; methylation ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Nucleic Acid Conformation ; Nucleotides - chemistry ; Nucleotides - genetics ; Nucleotides - metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Sequence Homology, Amino Acid ; Structure-Activity Relationship ; Thermodynamics ; Thymine - metabolism ; thymine-DNA glycosylase</subject><ispartof>Journal of molecular biology, 2002-01, Vol.315 (3), p.373-384</ispartof><rights>2002 Academic Press</rights><rights>Copyright 2002 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</citedby><cites>FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11786018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mol, Clifford D</creatorcontrib><creatorcontrib>Arvai, Andrew S</creatorcontrib><creatorcontrib>Begley, Thomas J</creatorcontrib><creatorcontrib>Cunningham, Richard P</creatorcontrib><creatorcontrib>Tainer, John A</creatorcontrib><title>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal
anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.</description><subject>Amino Acid Sequence</subject><subject>Base Pair Mismatch - genetics</subject><subject>base twisting</subject><subject>Binding Sites</subject><subject>Carbon-Oxygen Lyases - chemistry</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonuclease (Pyrimidine Dimer)</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA glycosylase</subject><subject>DNA mismatch</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Methanobacteriaceae - enzymology</subject><subject>Methanobacteriaceae - genetics</subject><subject>methylation</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - genetics</subject><subject>Nucleotides - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Thymine - metabolism</subject><subject>thymine-DNA glycosylase</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kE1v1DAQhi0EokvhyhH5xC2L7Xgdh1vV8iVVcADOlj2etK7iuNjOolz55STalThxGs3omVczDyGvOdtzxtS7h-jCXjDG9weh5BOy40z3jVatfkp2jAnRCN2qC_KilAfG2KGV-jm54LzTinG9I3--1zxDnTNSO3lqoYZjqAtNA7W03mOOqVTrRlybJYYJm5uvV_RuXCCVZbQF31M8Bo8TIB1Spm4d0fo7lBqmO1oTzRjTEWkMJdoK9-jplHK0I91yNrq8JM8GOxZ8da6X5OfHDz-uPze33z59ub66bUC2XW1sq6RzDkBaP6Dq0XoutRaqcxoAul55L0G4FqWWGnTvteMHxL4D0SO69pK8PeU-5vRrxlLNehTgONoJ01wM10JwyeUK7k8g5FRKxsE85hBtXgxnZrNuNutms2426-vCm3Py7CL6f_hZ8wroE4Drf8eA2RQImzMfMkI1PoX_Zf8FIKWUZQ</recordid><startdate>20020118</startdate><enddate>20020118</enddate><creator>Mol, Clifford D</creator><creator>Arvai, Andrew S</creator><creator>Begley, Thomas J</creator><creator>Cunningham, Richard P</creator><creator>Tainer, John A</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20020118</creationdate><title>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</title><author>Mol, Clifford D ; Arvai, Andrew S ; Begley, Thomas J ; Cunningham, Richard P ; Tainer, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Base Pair Mismatch - genetics</topic><topic>base twisting</topic><topic>Binding Sites</topic><topic>Carbon-Oxygen Lyases - chemistry</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonuclease (Pyrimidine Dimer)</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA glycosylase</topic><topic>DNA mismatch</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Methanobacteriaceae - enzymology</topic><topic>Methanobacteriaceae - genetics</topic><topic>methylation</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - genetics</topic><topic>Nucleotides - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Thymine - metabolism</topic><topic>thymine-DNA glycosylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mol, Clifford D</creatorcontrib><creatorcontrib>Arvai, Andrew S</creatorcontrib><creatorcontrib>Begley, Thomas J</creatorcontrib><creatorcontrib>Cunningham, Richard P</creatorcontrib><creatorcontrib>Tainer, John A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mol, Clifford D</au><au>Arvai, Andrew S</au><au>Begley, Thomas J</au><au>Cunningham, Richard P</au><au>Tainer, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2002-01-18</date><risdate>2002</risdate><volume>315</volume><issue>3</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 Å resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base ∼90° away from its normal
anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>11786018</pmid><doi>10.1006/jmbi.2001.5264</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2002-01, Vol.315 (3), p.373-384 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_18221414 |
source | Elsevier |
subjects | Amino Acid Sequence Base Pair Mismatch - genetics base twisting Binding Sites Carbon-Oxygen Lyases - chemistry Carbon-Oxygen Lyases - metabolism Crystallography, X-Ray Deoxyribonuclease (Pyrimidine Dimer) DNA - chemistry DNA - genetics DNA - metabolism DNA glycosylase DNA mismatch DNA repair DNA Repair - genetics DNA-(Apurinic or Apyrimidinic Site) Lyase DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endodeoxyribonucleases - chemistry Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Methanobacteriaceae - enzymology Methanobacteriaceae - genetics methylation Models, Molecular Molecular Sequence Data Mutation - genetics Nucleic Acid Conformation Nucleotides - chemistry Nucleotides - genetics Nucleotides - metabolism Protein Structure, Secondary Protein Structure, Tertiary Sequence Alignment Sequence Homology, Amino Acid Structure-Activity Relationship Thermodynamics Thymine - metabolism thymine-DNA glycosylase |
title | Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20activity%20of%20a%20thermostable%20thymine-DNA%20glycosylase:%20evidence%20for%20base%20twisting%20to%20remove%20mismatched%20normal%20DNA%20bases&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Mol,%20Clifford%20D&rft.date=2002-01-18&rft.volume=315&rft.issue=3&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2001.5264&rft_dat=%3Cproquest_cross%3E18221414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-a364bbbcc4adfe69ead1488267b8ccc796dd4c2b3e4848c89d8b15ee97c29eeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18221414&rft_id=info:pmid/11786018&rfr_iscdi=true |