Loading…

Fat fractal scaling of drainage networks from a random spatial network model

An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the su...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 1992-07, Vol.28 (7), p.1975-1981
Main Authors: Karlinger, Michael R., Troutman, Brent M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3
cites cdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3
container_end_page 1981
container_issue 7
container_start_page 1975
container_title Water resources research
container_volume 28
creator Karlinger, Michael R.
Troutman, Brent M.
description An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.
doi_str_mv 10.1029/92WR00805
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18224063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13714397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVg_8gJ8FD7OxHurtHDbYKqUqp9LhM0k2JzUfdTan990ZSvImnGZjnncNLyDWFOwpMjzRbzgEURCdkQLUQodSSn5IBgOAh5VqekwvvPwCoiMZyQJIJtkHuMGuxDHyGZVGvgyYPVg6LGtc2qG27b9zGd6ipAgwc1qtu8Vtsiy5yPAdVs7LlJTnLsfT26jiH5H3yuIifwuR1-hzfJyFyDSpERkUapRFqBGAoFChFtcypyLgEnmaKWaBaM6F1HumU8zSPUsiY5hFwZfmQ3PR_t6753FnfmqrwmS1LrG2z84YqxgSM-f-QSyq6Ujp428PMNd47m5utKyp0B0PB_BRrfovt7Ki3-6K0h7-hWc7jeaSo6hJhnyh8a79-E-g2Ziy57OTL1Mwepm_xjCZmwb8Br56Gew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13714397</pqid></control><display><type>article</type><title>Fat fractal scaling of drainage networks from a random spatial network model</title><source>Wiley-Blackwell Journals</source><creator>Karlinger, Michael R. ; Troutman, Brent M.</creator><creatorcontrib>Karlinger, Michael R. ; Troutman, Brent M.</creatorcontrib><description>An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/92WR00805</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1992-07, Vol.28 (7), p.1975-1981</ispartof><rights>This paper is not subject to U.S. copyright. Published in 1992 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</citedby><cites>FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F92WR00805$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F92WR00805$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids></links><search><creatorcontrib>Karlinger, Michael R.</creatorcontrib><creatorcontrib>Troutman, Brent M.</creatorcontrib><title>Fat fractal scaling of drainage networks from a random spatial network model</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQBuBFFKzVg_8gJ8FD7OxHurtHDbYKqUqp9LhM0k2JzUfdTan990ZSvImnGZjnncNLyDWFOwpMjzRbzgEURCdkQLUQodSSn5IBgOAh5VqekwvvPwCoiMZyQJIJtkHuMGuxDHyGZVGvgyYPVg6LGtc2qG27b9zGd6ipAgwc1qtu8Vtsiy5yPAdVs7LlJTnLsfT26jiH5H3yuIifwuR1-hzfJyFyDSpERkUapRFqBGAoFChFtcypyLgEnmaKWaBaM6F1HumU8zSPUsiY5hFwZfmQ3PR_t6753FnfmqrwmS1LrG2z84YqxgSM-f-QSyq6Ujp428PMNd47m5utKyp0B0PB_BRrfovt7Ki3-6K0h7-hWc7jeaSo6hJhnyh8a79-E-g2Ziy57OTL1Mwepm_xjCZmwb8Br56Gew</recordid><startdate>199207</startdate><enddate>199207</enddate><creator>Karlinger, Michael R.</creator><creator>Troutman, Brent M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199207</creationdate><title>Fat fractal scaling of drainage networks from a random spatial network model</title><author>Karlinger, Michael R. ; Troutman, Brent M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlinger, Michael R.</creatorcontrib><creatorcontrib>Troutman, Brent M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlinger, Michael R.</au><au>Troutman, Brent M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fat fractal scaling of drainage networks from a random spatial network model</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1992-07</date><risdate>1992</risdate><volume>28</volume><issue>7</issue><spage>1975</spage><epage>1981</epage><pages>1975-1981</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/92WR00805</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1992-07, Vol.28 (7), p.1975-1981
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_18224063
source Wiley-Blackwell Journals
title Fat fractal scaling of drainage networks from a random spatial network model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fat%20fractal%20scaling%20of%20drainage%20networks%20from%20a%20random%20spatial%20network%20model&rft.jtitle=Water%20resources%20research&rft.au=Karlinger,%20Michael%20R.&rft.date=1992-07&rft.volume=28&rft.issue=7&rft.spage=1975&rft.epage=1981&rft.pages=1975-1981&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/92WR00805&rft_dat=%3Cproquest_cross%3E13714397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13714397&rft_id=info:pmid/&rfr_iscdi=true