Loading…
Fat fractal scaling of drainage networks from a random spatial network model
An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the su...
Saved in:
Published in: | Water resources research 1992-07, Vol.28 (7), p.1975-1981 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3 |
container_end_page | 1981 |
container_issue | 7 |
container_start_page | 1975 |
container_title | Water resources research |
container_volume | 28 |
creator | Karlinger, Michael R. Troutman, Brent M. |
description | An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables. |
doi_str_mv | 10.1029/92WR00805 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18224063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13714397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVg_8gJ8FD7OxHurtHDbYKqUqp9LhM0k2JzUfdTan990ZSvImnGZjnncNLyDWFOwpMjzRbzgEURCdkQLUQodSSn5IBgOAh5VqekwvvPwCoiMZyQJIJtkHuMGuxDHyGZVGvgyYPVg6LGtc2qG27b9zGd6ipAgwc1qtu8Vtsiy5yPAdVs7LlJTnLsfT26jiH5H3yuIifwuR1-hzfJyFyDSpERkUapRFqBGAoFChFtcypyLgEnmaKWaBaM6F1HumU8zSPUsiY5hFwZfmQ3PR_t6753FnfmqrwmS1LrG2z84YqxgSM-f-QSyq6Ujp428PMNd47m5utKyp0B0PB_BRrfovt7Ki3-6K0h7-hWc7jeaSo6hJhnyh8a79-E-g2Ziy57OTL1Mwepm_xjCZmwb8Br56Gew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13714397</pqid></control><display><type>article</type><title>Fat fractal scaling of drainage networks from a random spatial network model</title><source>Wiley-Blackwell Journals</source><creator>Karlinger, Michael R. ; Troutman, Brent M.</creator><creatorcontrib>Karlinger, Michael R. ; Troutman, Brent M.</creatorcontrib><description>An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/92WR00805</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1992-07, Vol.28 (7), p.1975-1981</ispartof><rights>This paper is not subject to U.S. copyright. Published in 1992 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</citedby><cites>FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F92WR00805$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F92WR00805$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids></links><search><creatorcontrib>Karlinger, Michael R.</creatorcontrib><creatorcontrib>Troutman, Brent M.</creatorcontrib><title>Fat fractal scaling of drainage networks from a random spatial network model</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQBuBFFKzVg_8gJ8FD7OxHurtHDbYKqUqp9LhM0k2JzUfdTan990ZSvImnGZjnncNLyDWFOwpMjzRbzgEURCdkQLUQodSSn5IBgOAh5VqekwvvPwCoiMZyQJIJtkHuMGuxDHyGZVGvgyYPVg6LGtc2qG27b9zGd6ipAgwc1qtu8Vtsiy5yPAdVs7LlJTnLsfT26jiH5H3yuIifwuR1-hzfJyFyDSpERkUapRFqBGAoFChFtcypyLgEnmaKWaBaM6F1HumU8zSPUsiY5hFwZfmQ3PR_t6753FnfmqrwmS1LrG2z84YqxgSM-f-QSyq6Ujp428PMNd47m5utKyp0B0PB_BRrfovt7Ki3-6K0h7-hWc7jeaSo6hJhnyh8a79-E-g2Ziy57OTL1Mwepm_xjCZmwb8Br56Gew</recordid><startdate>199207</startdate><enddate>199207</enddate><creator>Karlinger, Michael R.</creator><creator>Troutman, Brent M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199207</creationdate><title>Fat fractal scaling of drainage networks from a random spatial network model</title><author>Karlinger, Michael R. ; Troutman, Brent M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlinger, Michael R.</creatorcontrib><creatorcontrib>Troutman, Brent M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlinger, Michael R.</au><au>Troutman, Brent M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fat fractal scaling of drainage networks from a random spatial network model</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1992-07</date><risdate>1992</risdate><volume>28</volume><issue>7</issue><spage>1975</spage><epage>1981</epage><pages>1975-1981</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/92WR00805</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 1992-07, Vol.28 (7), p.1975-1981 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_18224063 |
source | Wiley-Blackwell Journals |
title | Fat fractal scaling of drainage networks from a random spatial network model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fat%20fractal%20scaling%20of%20drainage%20networks%20from%20a%20random%20spatial%20network%20model&rft.jtitle=Water%20resources%20research&rft.au=Karlinger,%20Michael%20R.&rft.date=1992-07&rft.volume=28&rft.issue=7&rft.spage=1975&rft.epage=1981&rft.pages=1975-1981&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/92WR00805&rft_dat=%3Cproquest_cross%3E13714397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3908-a214b5b5a9a002a48088197f14c3703bc82e01992499f59b33bf5b0c2935038e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13714397&rft_id=info:pmid/&rfr_iscdi=true |