Loading…

Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells

Plant and yeast derived hydrolysates are economical and efficient alternative medium supplements to improve mammalian cell culture performance. We supplemented two commercial Chinese hamster ovary (CHO) culture media with hydrolysates from four different sources, yeast, soybean, Ex-Cell CD (a chemic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering 2016-10, Vol.122 (4), p.499-506
Main Authors: Ho, Steven C.L., Nian, Rui, Woen, Susanto, Chng, Jake, Zhang, Peiqing, Yang, Yuansheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant and yeast derived hydrolysates are economical and efficient alternative medium supplements to improve mammalian cell culture performance. We supplemented two commercial Chinese hamster ovary (CHO) culture media with hydrolysates from four different sources, yeast, soybean, Ex-Cell CD (a chemically defined hydrolysate replacement) and wheat to improve the productivity of two cell lines expressing different monoclonal antibodies (mAbs). Yeast, soybean and Ex-Cell CD improved the final mAb titer by increasing the specific productivity (qP) and/or extension of the culture period. Wheat hydrolysates increased peak viable cell density but did not improve productivity. IgG recovery from protein A purification was not compromised for all cultures by adding yeast, soybean and Ex-Cell CD hydrolysates except for one sample from soybean supplemented culture. Adding these three hydrolysates neither increased the amount of host cell protein, DNA or aggregate impurity amounts nor affect their clearance after purification. Profiling of the glycan types revealed that yeast and soybean hydrolysates could affect the distribution of galactosylated glycans. Ex-Cell CD performed the best at maintaining glycan profile compared to the non-supplemented cultures. Overall, yeast performed the best at improving CHO culture growth and productivity without being detrimental to downstream protein A processes but could affect mAb product glycan distribution while Ex-Cell CD yielded lower titers but has less effect on glycosylation. The hydrolysate to use would thus depend on the requirements of each process and our results would provide a good reference for improving culture performance with hydrolysates or related studies.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2016.03.003