Loading…

Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries

[Display omitted] •Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-c...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2016-05, Vol.199, p.35-44
Main Authors: Kim, Jinwoo, Kim, Ji Yoon, Pham-Cong, De, Jeong, Se Young, Chang, Jinho, Choi, Jun Hee, Braun, Paul V., Cho, Chae Ryong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3
cites cdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3
container_end_page 44
container_issue
container_start_page 35
container_title Electrochimica acta
container_volume 199
creator Kim, Jinwoo
Kim, Ji Yoon
Pham-Cong, De
Jeong, Se Young
Chang, Jinho
Choi, Jun Hee
Braun, Paul V.
Cho, Chae Ryong
description [Display omitted] •Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers. The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.
doi_str_mv 10.1016/j.electacta.2016.03.137
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825441990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861630706X</els_id><sourcerecordid>1825441990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</originalsourceid><addsrcrecordid>eNqFUcFu3CAQRVUqdbPtN9THXHDB2Ng-RlGaRIqUS3pGYxg3s_LCFtht8zX91bLZJtdIIwHvzXto5jH2VYpaCqm_bWpc0GYoVTcFqIWqpeo_sJUcesXV0I1nbCWEVLzVg_7EzlPaCCF63YsV-3vnHR3I7WFZnisLcQqe2wAZXQXeVS_eMaQMmSyfQ7TIHUY6FP5nhN0TeuThDznkv8tzV-CF8hPtt1WmDP54eaErDz7MNGFMFZTyoWDb8k8kWKpi_KrjFHw1QT4ymD6zjzMsCb_8P9fsx_frx6tbfv9wc3d1ec9tGTDzfoQWXAcNqNZ2ymFZjRrRgh6Fku3QCHRqcH3TKz2Dajo5oW7FDE43Uk9WrdnFyXcXw689pmy2lCwuC3gM-2Tk0HRtK8dit2b9qdWWvaSIs9lF2kJ8NlKYYyRmY94iMcdIjFCmRFKUlycllkkOhNEkS-gtOoql37hA73r8A7btnf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825441990</pqid></control><display><type>article</type><title>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</title><source>ScienceDirect Journals</source><creator>Kim, Jinwoo ; Kim, Ji Yoon ; Pham-Cong, De ; Jeong, Se Young ; Chang, Jinho ; Choi, Jun Hee ; Braun, Paul V. ; Cho, Chae Ryong</creator><creatorcontrib>Kim, Jinwoo ; Kim, Ji Yoon ; Pham-Cong, De ; Jeong, Se Young ; Chang, Jinho ; Choi, Jun Hee ; Braun, Paul V. ; Cho, Chae Ryong</creatorcontrib><description>[Display omitted] •Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers. The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2016.03.137</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon ; carbon coating ; Coating ; diffusion coefficient ; Double layer ; graphene wrapping ; lithium titanate ; Lithium-ion batteries ; Nanofibers ; Rechargeable batteries ; Titanates ; Wrapping</subject><ispartof>Electrochimica acta, 2016-05, Vol.199, p.35-44</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</citedby><cites>FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kim, Jinwoo</creatorcontrib><creatorcontrib>Kim, Ji Yoon</creatorcontrib><creatorcontrib>Pham-Cong, De</creatorcontrib><creatorcontrib>Jeong, Se Young</creatorcontrib><creatorcontrib>Chang, Jinho</creatorcontrib><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Cho, Chae Ryong</creatorcontrib><title>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</title><title>Electrochimica acta</title><description>[Display omitted] •Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers. The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.</description><subject>Carbon</subject><subject>carbon coating</subject><subject>Coating</subject><subject>diffusion coefficient</subject><subject>Double layer</subject><subject>graphene wrapping</subject><subject>lithium titanate</subject><subject>Lithium-ion batteries</subject><subject>Nanofibers</subject><subject>Rechargeable batteries</subject><subject>Titanates</subject><subject>Wrapping</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUcFu3CAQRVUqdbPtN9THXHDB2Ng-RlGaRIqUS3pGYxg3s_LCFtht8zX91bLZJtdIIwHvzXto5jH2VYpaCqm_bWpc0GYoVTcFqIWqpeo_sJUcesXV0I1nbCWEVLzVg_7EzlPaCCF63YsV-3vnHR3I7WFZnisLcQqe2wAZXQXeVS_eMaQMmSyfQ7TIHUY6FP5nhN0TeuThDznkv8tzV-CF8hPtt1WmDP54eaErDz7MNGFMFZTyoWDb8k8kWKpi_KrjFHw1QT4ymD6zjzMsCb_8P9fsx_frx6tbfv9wc3d1ec9tGTDzfoQWXAcNqNZ2ymFZjRrRgh6Fku3QCHRqcH3TKz2Dajo5oW7FDE43Uk9WrdnFyXcXw689pmy2lCwuC3gM-2Tk0HRtK8dit2b9qdWWvaSIs9lF2kJ8NlKYYyRmY94iMcdIjFCmRFKUlycllkkOhNEkS-gtOoql37hA73r8A7btnf0</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kim, Jinwoo</creator><creator>Kim, Ji Yoon</creator><creator>Pham-Cong, De</creator><creator>Jeong, Se Young</creator><creator>Chang, Jinho</creator><creator>Choi, Jun Hee</creator><creator>Braun, Paul V.</creator><creator>Cho, Chae Ryong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</title><author>Kim, Jinwoo ; Kim, Ji Yoon ; Pham-Cong, De ; Jeong, Se Young ; Chang, Jinho ; Choi, Jun Hee ; Braun, Paul V. ; Cho, Chae Ryong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>carbon coating</topic><topic>Coating</topic><topic>diffusion coefficient</topic><topic>Double layer</topic><topic>graphene wrapping</topic><topic>lithium titanate</topic><topic>Lithium-ion batteries</topic><topic>Nanofibers</topic><topic>Rechargeable batteries</topic><topic>Titanates</topic><topic>Wrapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinwoo</creatorcontrib><creatorcontrib>Kim, Ji Yoon</creatorcontrib><creatorcontrib>Pham-Cong, De</creatorcontrib><creatorcontrib>Jeong, Se Young</creatorcontrib><creatorcontrib>Chang, Jinho</creatorcontrib><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Cho, Chae Ryong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinwoo</au><au>Kim, Ji Yoon</au><au>Pham-Cong, De</au><au>Jeong, Se Young</au><au>Chang, Jinho</au><au>Choi, Jun Hee</au><au>Braun, Paul V.</au><au>Cho, Chae Ryong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>199</volume><spage>35</spage><epage>44</epage><pages>35-44</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>[Display omitted] •Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers. The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2016.03.137</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2016-05, Vol.199, p.35-44
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1825441990
source ScienceDirect Journals
subjects Carbon
carbon coating
Coating
diffusion coefficient
Double layer
graphene wrapping
lithium titanate
Lithium-ion batteries
Nanofibers
Rechargeable batteries
Titanates
Wrapping
title Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individually%20carbon-coated%20and%20electrostatic-force-derived%20graphene-oxide-wrapped%20lithium%20titanium%20oxide%20nanofibers%20as%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Kim,%20Jinwoo&rft.date=2016-05-01&rft.volume=199&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2016.03.137&rft_dat=%3Cproquest_cross%3E1825441990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825441990&rft_id=info:pmid/&rfr_iscdi=true