Loading…
Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries
[Display omitted] •Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-c...
Saved in:
Published in: | Electrochimica acta 2016-05, Vol.199, p.35-44 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3 |
container_end_page | 44 |
container_issue | |
container_start_page | 35 |
container_title | Electrochimica acta |
container_volume | 199 |
creator | Kim, Jinwoo Kim, Ji Yoon Pham-Cong, De Jeong, Se Young Chang, Jinho Choi, Jun Hee Braun, Paul V. Cho, Chae Ryong |
description | [Display omitted]
•Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers.
The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance. |
doi_str_mv | 10.1016/j.electacta.2016.03.137 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825441990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861630706X</els_id><sourcerecordid>1825441990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</originalsourceid><addsrcrecordid>eNqFUcFu3CAQRVUqdbPtN9THXHDB2Ng-RlGaRIqUS3pGYxg3s_LCFtht8zX91bLZJtdIIwHvzXto5jH2VYpaCqm_bWpc0GYoVTcFqIWqpeo_sJUcesXV0I1nbCWEVLzVg_7EzlPaCCF63YsV-3vnHR3I7WFZnisLcQqe2wAZXQXeVS_eMaQMmSyfQ7TIHUY6FP5nhN0TeuThDznkv8tzV-CF8hPtt1WmDP54eaErDz7MNGFMFZTyoWDb8k8kWKpi_KrjFHw1QT4ymD6zjzMsCb_8P9fsx_frx6tbfv9wc3d1ec9tGTDzfoQWXAcNqNZ2ymFZjRrRgh6Fku3QCHRqcH3TKz2Dajo5oW7FDE43Uk9WrdnFyXcXw689pmy2lCwuC3gM-2Tk0HRtK8dit2b9qdWWvaSIs9lF2kJ8NlKYYyRmY94iMcdIjFCmRFKUlycllkkOhNEkS-gtOoql37hA73r8A7btnf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825441990</pqid></control><display><type>article</type><title>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</title><source>ScienceDirect Journals</source><creator>Kim, Jinwoo ; Kim, Ji Yoon ; Pham-Cong, De ; Jeong, Se Young ; Chang, Jinho ; Choi, Jun Hee ; Braun, Paul V. ; Cho, Chae Ryong</creator><creatorcontrib>Kim, Jinwoo ; Kim, Ji Yoon ; Pham-Cong, De ; Jeong, Se Young ; Chang, Jinho ; Choi, Jun Hee ; Braun, Paul V. ; Cho, Chae Ryong</creatorcontrib><description>[Display omitted]
•Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers.
The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2016.03.137</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon ; carbon coating ; Coating ; diffusion coefficient ; Double layer ; graphene wrapping ; lithium titanate ; Lithium-ion batteries ; Nanofibers ; Rechargeable batteries ; Titanates ; Wrapping</subject><ispartof>Electrochimica acta, 2016-05, Vol.199, p.35-44</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</citedby><cites>FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kim, Jinwoo</creatorcontrib><creatorcontrib>Kim, Ji Yoon</creatorcontrib><creatorcontrib>Pham-Cong, De</creatorcontrib><creatorcontrib>Jeong, Se Young</creatorcontrib><creatorcontrib>Chang, Jinho</creatorcontrib><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Cho, Chae Ryong</creatorcontrib><title>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</title><title>Electrochimica acta</title><description>[Display omitted]
•Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers.
The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.</description><subject>Carbon</subject><subject>carbon coating</subject><subject>Coating</subject><subject>diffusion coefficient</subject><subject>Double layer</subject><subject>graphene wrapping</subject><subject>lithium titanate</subject><subject>Lithium-ion batteries</subject><subject>Nanofibers</subject><subject>Rechargeable batteries</subject><subject>Titanates</subject><subject>Wrapping</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUcFu3CAQRVUqdbPtN9THXHDB2Ng-RlGaRIqUS3pGYxg3s_LCFtht8zX91bLZJtdIIwHvzXto5jH2VYpaCqm_bWpc0GYoVTcFqIWqpeo_sJUcesXV0I1nbCWEVLzVg_7EzlPaCCF63YsV-3vnHR3I7WFZnisLcQqe2wAZXQXeVS_eMaQMmSyfQ7TIHUY6FP5nhN0TeuThDznkv8tzV-CF8hPtt1WmDP54eaErDz7MNGFMFZTyoWDb8k8kWKpi_KrjFHw1QT4ymD6zjzMsCb_8P9fsx_frx6tbfv9wc3d1ec9tGTDzfoQWXAcNqNZ2ymFZjRrRgh6Fku3QCHRqcH3TKz2Dajo5oW7FDE43Uk9WrdnFyXcXw689pmy2lCwuC3gM-2Tk0HRtK8dit2b9qdWWvaSIs9lF2kJ8NlKYYyRmY94iMcdIjFCmRFKUlycllkkOhNEkS-gtOoql37hA73r8A7btnf0</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kim, Jinwoo</creator><creator>Kim, Ji Yoon</creator><creator>Pham-Cong, De</creator><creator>Jeong, Se Young</creator><creator>Chang, Jinho</creator><creator>Choi, Jun Hee</creator><creator>Braun, Paul V.</creator><creator>Cho, Chae Ryong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</title><author>Kim, Jinwoo ; Kim, Ji Yoon ; Pham-Cong, De ; Jeong, Se Young ; Chang, Jinho ; Choi, Jun Hee ; Braun, Paul V. ; Cho, Chae Ryong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>carbon coating</topic><topic>Coating</topic><topic>diffusion coefficient</topic><topic>Double layer</topic><topic>graphene wrapping</topic><topic>lithium titanate</topic><topic>Lithium-ion batteries</topic><topic>Nanofibers</topic><topic>Rechargeable batteries</topic><topic>Titanates</topic><topic>Wrapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinwoo</creatorcontrib><creatorcontrib>Kim, Ji Yoon</creatorcontrib><creatorcontrib>Pham-Cong, De</creatorcontrib><creatorcontrib>Jeong, Se Young</creatorcontrib><creatorcontrib>Chang, Jinho</creatorcontrib><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Cho, Chae Ryong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinwoo</au><au>Kim, Ji Yoon</au><au>Pham-Cong, De</au><au>Jeong, Se Young</au><au>Chang, Jinho</au><au>Choi, Jun Hee</au><au>Braun, Paul V.</au><au>Cho, Chae Ryong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>199</volume><spage>35</spage><epage>44</epage><pages>35-44</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>[Display omitted]
•Li4Ti5O12 nanofibers are fabricated by electrospinning and annealing process.•Carbon-coated Li4Ti5O12 nanofibers are prepared by hydrothermal process.•Individually graphene-oxide-wrapped Li4Ti5O12 nanofibers are prepared by electrostatic force.•Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li4Ti5O12 nanofibers.
The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li4Ti5O12 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110mAhg−1at 20C) and over two orders of magnitude higher diffusion coefficient (DLi=∼1.04×10−11cm2s−1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2016.03.137</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2016-05, Vol.199, p.35-44 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825441990 |
source | ScienceDirect Journals |
subjects | Carbon carbon coating Coating diffusion coefficient Double layer graphene wrapping lithium titanate Lithium-ion batteries Nanofibers Rechargeable batteries Titanates Wrapping |
title | Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individually%20carbon-coated%20and%20electrostatic-force-derived%20graphene-oxide-wrapped%20lithium%20titanium%20oxide%20nanofibers%20as%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Kim,%20Jinwoo&rft.date=2016-05-01&rft.volume=199&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2016.03.137&rft_dat=%3Cproquest_cross%3E1825441990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-79a4ad5a2a34c53de10139eca690314820ed38d72736fa3251be640fad6216bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825441990&rft_id=info:pmid/&rfr_iscdi=true |