Loading…

Global defensive sets in graphs

In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC(X)=true if and only if |N[X]∩S|≥|N[X]∖S| hol...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics 2016-07, Vol.339 (7), p.1861-1870
Main Authors: Lewona, Robert, Malafiejskab, Anna, Malafiejskia, Michal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343
cites cdi_FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343
container_end_page 1870
container_issue 7
container_start_page 1861
container_title Discrete mathematics
container_volume 339
creator Lewona, Robert
Malafiejskab, Anna
Malafiejskia, Michal
description In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC(X)=true if and only if |N[X]∩S|≥|N[X]∖S| holds, where N[X] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for each vertex v∈S we have SEC({v})=true. If S is also a dominating set of G (i.e.,  N[S]=V(G)), we say that S is a global defensive alliance. We introduce the concept of defensive sets in graph G as follows: set S is a defensive set in G if and only if for each vertex v∈S we have SEC({v})=true or there exists a neighbour u of v such that u∈S and SEC({v,u})=true. Similarly, if S is also a dominating set of G, we say that S is a global defensive set. We also study the problems of total dominating alliances (total alliances) and total dominating defensive sets (total defensive sets), i.e.,  S is a dominating set and the induced graph G[S] has no isolated vertices. In the paper we proved the NP-completeness for planar bipartite subcubic graphs of the decision versions of the following minimalization problems: a global and total alliance, a global and total defensive set. We proposed polynomial time algorithms solving in trees the problem of finding the minimum total and global defensive set and the total alliance. We obtained the lower bound on the minimum size of a global defensive set in arbitrary graphs and trees.
doi_str_mv 10.1016/j.disc.2016.01.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825447341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X16300036</els_id><sourcerecordid>1825447341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4MU9etk1k2STLHiRolUoeFHoLWSTWU3Z7tZkK_j2ptSzp5mB_xv4P0KugVZAQd5tKh-Sq1jeKwoVZeyEzEArVkoN61MyoxRYyWW9PicXKW1oviXXM3Kz7MfW9oXHDocUvrFIOKUiDMVHtLvPdEnOOtsnvPqbc_L-9Pi2eC5Xr8uXxcOqdFypqQRA3QrqnfINl1IJAC2wZo6q1nWi8dK2rua29Q1YoIqzBpF1uqGWiZoLPie3x7-7OH7tMU1mmwth39sBx30yoFkthOICcpQdoy6OKUXszC6GrY0_Bqg52DAbc7BhDjYMBZNtZOj-CGEu8R0wmuQCDg59iOgm48fwH_4Lx8NmWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825447341</pqid></control><display><type>article</type><title>Global defensive sets in graphs</title><source>ScienceDirect Journals</source><creator>Lewona, Robert ; Malafiejskab, Anna ; Malafiejskia, Michal</creator><creatorcontrib>Lewona, Robert ; Malafiejskab, Anna ; Malafiejskia, Michal</creatorcontrib><description>In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC(X)=true if and only if |N[X]∩S|≥|N[X]∖S| holds, where N[X] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for each vertex v∈S we have SEC({v})=true. If S is also a dominating set of G (i.e.,  N[S]=V(G)), we say that S is a global defensive alliance. We introduce the concept of defensive sets in graph G as follows: set S is a defensive set in G if and only if for each vertex v∈S we have SEC({v})=true or there exists a neighbour u of v such that u∈S and SEC({v,u})=true. Similarly, if S is also a dominating set of G, we say that S is a global defensive set. We also study the problems of total dominating alliances (total alliances) and total dominating defensive sets (total defensive sets), i.e.,  S is a dominating set and the induced graph G[S] has no isolated vertices. In the paper we proved the NP-completeness for planar bipartite subcubic graphs of the decision versions of the following minimalization problems: a global and total alliance, a global and total defensive set. We proposed polynomial time algorithms solving in trees the problem of finding the minimum total and global defensive set and the total alliance. We obtained the lower bound on the minimum size of a global defensive set in arbitrary graphs and trees.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2016.01.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-completeness ; Algorithms ; Alliance ; Defensive set ; Domination ; Graph theory ; Graphs ; Lower bounds ; Mathematical analysis ; Trees</subject><ispartof>Discrete mathematics, 2016-07, Vol.339 (7), p.1861-1870</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343</citedby><cites>FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lewona, Robert</creatorcontrib><creatorcontrib>Malafiejskab, Anna</creatorcontrib><creatorcontrib>Malafiejskia, Michal</creatorcontrib><title>Global defensive sets in graphs</title><title>Discrete mathematics</title><description>In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC(X)=true if and only if |N[X]∩S|≥|N[X]∖S| holds, where N[X] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for each vertex v∈S we have SEC({v})=true. If S is also a dominating set of G (i.e.,  N[S]=V(G)), we say that S is a global defensive alliance. We introduce the concept of defensive sets in graph G as follows: set S is a defensive set in G if and only if for each vertex v∈S we have SEC({v})=true or there exists a neighbour u of v such that u∈S and SEC({v,u})=true. Similarly, if S is also a dominating set of G, we say that S is a global defensive set. We also study the problems of total dominating alliances (total alliances) and total dominating defensive sets (total defensive sets), i.e.,  S is a dominating set and the induced graph G[S] has no isolated vertices. In the paper we proved the NP-completeness for planar bipartite subcubic graphs of the decision versions of the following minimalization problems: a global and total alliance, a global and total defensive set. We proposed polynomial time algorithms solving in trees the problem of finding the minimum total and global defensive set and the total alliance. We obtained the lower bound on the minimum size of a global defensive set in arbitrary graphs and trees.</description><subject>[formula omitted]-completeness</subject><subject>Algorithms</subject><subject>Alliance</subject><subject>Defensive set</subject><subject>Domination</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Trees</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4MU9etk1k2STLHiRolUoeFHoLWSTWU3Z7tZkK_j2ptSzp5mB_xv4P0KugVZAQd5tKh-Sq1jeKwoVZeyEzEArVkoN61MyoxRYyWW9PicXKW1oviXXM3Kz7MfW9oXHDocUvrFIOKUiDMVHtLvPdEnOOtsnvPqbc_L-9Pi2eC5Xr8uXxcOqdFypqQRA3QrqnfINl1IJAC2wZo6q1nWi8dK2rua29Q1YoIqzBpF1uqGWiZoLPie3x7-7OH7tMU1mmwth39sBx30yoFkthOICcpQdoy6OKUXszC6GrY0_Bqg52DAbc7BhDjYMBZNtZOj-CGEu8R0wmuQCDg59iOgm48fwH_4Lx8NmWA</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>Lewona, Robert</creator><creator>Malafiejskab, Anna</creator><creator>Malafiejskia, Michal</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160706</creationdate><title>Global defensive sets in graphs</title><author>Lewona, Robert ; Malafiejskab, Anna ; Malafiejskia, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>[formula omitted]-completeness</topic><topic>Algorithms</topic><topic>Alliance</topic><topic>Defensive set</topic><topic>Domination</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewona, Robert</creatorcontrib><creatorcontrib>Malafiejskab, Anna</creatorcontrib><creatorcontrib>Malafiejskia, Michal</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewona, Robert</au><au>Malafiejskab, Anna</au><au>Malafiejskia, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global defensive sets in graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2016-07-06</date><risdate>2016</risdate><volume>339</volume><issue>7</issue><spage>1861</spage><epage>1870</epage><pages>1861-1870</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC(X)=true if and only if |N[X]∩S|≥|N[X]∖S| holds, where N[X] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for each vertex v∈S we have SEC({v})=true. If S is also a dominating set of G (i.e.,  N[S]=V(G)), we say that S is a global defensive alliance. We introduce the concept of defensive sets in graph G as follows: set S is a defensive set in G if and only if for each vertex v∈S we have SEC({v})=true or there exists a neighbour u of v such that u∈S and SEC({v,u})=true. Similarly, if S is also a dominating set of G, we say that S is a global defensive set. We also study the problems of total dominating alliances (total alliances) and total dominating defensive sets (total defensive sets), i.e.,  S is a dominating set and the induced graph G[S] has no isolated vertices. In the paper we proved the NP-completeness for planar bipartite subcubic graphs of the decision versions of the following minimalization problems: a global and total alliance, a global and total defensive set. We proposed polynomial time algorithms solving in trees the problem of finding the minimum total and global defensive set and the total alliance. We obtained the lower bound on the minimum size of a global defensive set in arbitrary graphs and trees.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2016.01.022</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2016-07, Vol.339 (7), p.1861-1870
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1825447341
source ScienceDirect Journals
subjects [formula omitted]-completeness
Algorithms
Alliance
Defensive set
Domination
Graph theory
Graphs
Lower bounds
Mathematical analysis
Trees
title Global defensive sets in graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20defensive%20sets%20in%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Lewona,%20Robert&rft.date=2016-07-06&rft.volume=339&rft.issue=7&rft.spage=1861&rft.epage=1870&rft.pages=1861-1870&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2016.01.022&rft_dat=%3Cproquest_cross%3E1825447341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-11e8b40dc7d9366741184e52c07bcf49d6abc53abd91a107329ee2f890a245343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825447341&rft_id=info:pmid/&rfr_iscdi=true