Loading…

Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy

Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral pa...

Full description

Saved in:
Bibliographic Details
Published in:Plasma science & technology 2015-11, Vol.17 (11), p.964-970
Main Author: 孔海洋 孙兰香 胡静涛 辛勇 丛智博
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403
cites cdi_FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403
container_end_page 970
container_issue 11
container_start_page 964
container_title Plasma science & technology
container_volume 17
creator 孔海洋 孙兰香 胡静涛 辛勇 丛智博
description Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.
doi_str_mv 10.1088/1009-0630/17/11/14
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825452647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666599172</cqvip_id><sourcerecordid>1825452647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403</originalsourceid><addsrcrecordid>eNo9UMtOwzAQ9AEkSuEHOFmcuIR442eOUF6VKnEoPVuOa5dAGqd2KtS_J1GrXnZXq5nRzCB0B-QRiFI5EFJmRFCSg8wBcmAXaHJ-XqHrlH4I4axUdIKqpWuc7evQ4uDxshvuaBr8YnqDfYh41piUal9bc8b0zjUJr1LdbvDCJBezebveW7fGz9GZ33X4a09CIdnQHW7QpTdNcrenPUWrt9ev2Ue2-Hyfz54WmaVE9pllVDFbVKIiTnlVCe4NZVwZzySxysqitFBxp5TztCwB2DBKYqjgRFaM0Cl6OOp2Mez2LvV6Wyfrmsa0LuyTBlVwxgvB5AAtjlA7eEzRed3FemviQQPRY4l67EuPfWmQGkADG0j3J9J3aDe7If6ZJYTggxtZ0H9ngXIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825452647</pqid></control><display><type>article</type><title>Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>孔海洋 孙兰香 胡静涛 辛勇 丛智博</creator><creatorcontrib>孔海洋 孙兰香 胡静涛 辛勇 丛智博</creatorcontrib><description>Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.</description><identifier>ISSN: 1009-0630</identifier><identifier>DOI: 10.1088/1009-0630/17/11/14</identifier><language>eng</language><subject>Classification ; Laser induced breakdown ; Partitions ; Spectra ; Spectral lines ; Spectroscopy ; Steels ; 主成分分析 ; 人工神经网络 ; 光谱分析 ; 光谱数据 ; 击穿 ; 分类 ; 激光诱导 ; 钢</subject><ispartof>Plasma science &amp; technology, 2015-11, Vol.17 (11), p.964-970</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403</citedby><cites>FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84262X/84262X.jpg</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>孔海洋 孙兰香 胡静涛 辛勇 丛智博</creatorcontrib><title>Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy</title><title>Plasma science &amp; technology</title><addtitle>Plasma Science & Technology</addtitle><description>Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.</description><subject>Classification</subject><subject>Laser induced breakdown</subject><subject>Partitions</subject><subject>Spectra</subject><subject>Spectral lines</subject><subject>Spectroscopy</subject><subject>Steels</subject><subject>主成分分析</subject><subject>人工神经网络</subject><subject>光谱分析</subject><subject>光谱数据</subject><subject>击穿</subject><subject>分类</subject><subject>激光诱导</subject><subject>钢</subject><issn>1009-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQ9AEkSuEHOFmcuIR442eOUF6VKnEoPVuOa5dAGqd2KtS_J1GrXnZXq5nRzCB0B-QRiFI5EFJmRFCSg8wBcmAXaHJ-XqHrlH4I4axUdIKqpWuc7evQ4uDxshvuaBr8YnqDfYh41piUal9bc8b0zjUJr1LdbvDCJBezebveW7fGz9GZ33X4a09CIdnQHW7QpTdNcrenPUWrt9ev2Ue2-Hyfz54WmaVE9pllVDFbVKIiTnlVCe4NZVwZzySxysqitFBxp5TztCwB2DBKYqjgRFaM0Cl6OOp2Mez2LvV6Wyfrmsa0LuyTBlVwxgvB5AAtjlA7eEzRed3FemviQQPRY4l67EuPfWmQGkADG0j3J9J3aDe7If6ZJYTggxtZ0H9ngXIA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>孔海洋 孙兰香 胡静涛 辛勇 丛智博</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy</title><author>孔海洋 孙兰香 胡静涛 辛勇 丛智博</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Laser induced breakdown</topic><topic>Partitions</topic><topic>Spectra</topic><topic>Spectral lines</topic><topic>Spectroscopy</topic><topic>Steels</topic><topic>主成分分析</topic><topic>人工神经网络</topic><topic>光谱分析</topic><topic>光谱数据</topic><topic>击穿</topic><topic>分类</topic><topic>激光诱导</topic><topic>钢</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>孔海洋 孙兰香 胡静涛 辛勇 丛智博</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Plasma science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>孔海洋 孙兰香 胡静涛 辛勇 丛智博</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy</atitle><jtitle>Plasma science &amp; technology</jtitle><addtitle>Plasma Science & Technology</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>17</volume><issue>11</issue><spage>964</spage><epage>970</epage><pages>964-970</pages><issn>1009-0630</issn><abstract>Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.</abstract><doi>10.1088/1009-0630/17/11/14</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-0630
ispartof Plasma science & technology, 2015-11, Vol.17 (11), p.964-970
issn 1009-0630
language eng
recordid cdi_proquest_miscellaneous_1825452647
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Classification
Laser induced breakdown
Partitions
Spectra
Spectral lines
Spectroscopy
Steels
主成分分析
人工神经网络
光谱分析
光谱数据
击穿
分类
激光诱导

title Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Spectral%20Data%20for%20Classification%20of%20Steels%20Using%20Laser-Induced%20Breakdown%20Spectroscopy&rft.jtitle=Plasma%20science%20&%20technology&rft.au=%E5%AD%94%E6%B5%B7%E6%B4%8B%20%E5%AD%99%E5%85%B0%E9%A6%99%20%E8%83%A1%E9%9D%99%E6%B6%9B%20%E8%BE%9B%E5%8B%87%20%E4%B8%9B%E6%99%BA%E5%8D%9A&rft.date=2015-11-01&rft.volume=17&rft.issue=11&rft.spage=964&rft.epage=970&rft.pages=964-970&rft.issn=1009-0630&rft_id=info:doi/10.1088/1009-0630/17/11/14&rft_dat=%3Cproquest_cross%3E1825452647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-c4384c2b6b0e8f8b65fa3458af470c8c729c1b5e88ef39911499190a36507b403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825452647&rft_id=info:pmid/&rft_cqvip_id=666599172&rfr_iscdi=true