Loading…

Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges

Bioactive glass (BG) based scaffolds (45S5 BG composition) were developed by the replica technique using natural marine sponges as sacrificial templates. The resulting scaffolds were characterized by superior mechanical properties (compression strength up to 4 MPa) compared to conventional BG scaffo...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 2016-06, Vol.44 (6), p.1881-1893
Main Authors: Boccardi, E., Philippart, A., Melli, V., Altomare, L., De Nardo, L., Novajra, G., Vitale-Brovarone, C., Fey, T., Boccaccini, A. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioactive glass (BG) based scaffolds (45S5 BG composition) were developed by the replica technique using natural marine sponges as sacrificial templates. The resulting scaffolds were characterized by superior mechanical properties (compression strength up to 4 MPa) compared to conventional BG scaffolds prepared using polyurethane (PU) packaging foam as a template. This result was ascribed to a reduction of the total scaffold porosity without affecting the pore interconnectivity (>99%). It was demonstrated that the reduction of total porosity did not affect the bioactivity of the BG-based scaffolds, tested by immersion of scaffolds in simulated body fluid (SBF). After 1 day of immersion in SBF, a homogeneous CaP deposit on the surface of the scaffolds was formed, which evolved over time into carbonate hydroxyapatite (HCA). Moreover, the enhanced mechanical properties of these scaffolds were constant over time in SBF; after an initial reduction of the maximum compressive strength upon 7 days of immersion in SBF (to 1.2 ± 0.2 MPa), the strength values remained almost constant and higher than those of BG-based scaffolds prepared using PU foam (
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-016-1595-5