Loading…

Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation

•Two-phase model for the simulation of nanofluid flow in microchannels with LVG is utilized.•Local heat transfer coefficient along microchannel with LVG is presented.•Adding LVG to microchannel with nanofluid flow boosts heat transfer.•Efficiency of using nanoparticle and/or LVG in microchannel is d...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2016-05, Vol.100, p.179-189
Main Authors: Sabaghan, Amin, Edalatpour, Mojtaba, Moghadam, Mohammad Charjouei, Roohi, Ehsan, Niazmand, Hamid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3
cites cdi_FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3
container_end_page 189
container_issue
container_start_page 179
container_title Applied thermal engineering
container_volume 100
creator Sabaghan, Amin
Edalatpour, Mojtaba
Moghadam, Mohammad Charjouei
Roohi, Ehsan
Niazmand, Hamid
description •Two-phase model for the simulation of nanofluid flow in microchannels with LVG is utilized.•Local heat transfer coefficient along microchannel with LVG is presented.•Adding LVG to microchannel with nanofluid flow boosts heat transfer.•Efficiency of using nanoparticle and/or LVG in microchannel is discussed. Here we report a comprehensive numerical procedure based on the two-phase approach to simulate a rectangular microchannel consisting of six longitudinal vortex generators (LVGs). Nanofluids are used to remove heat generated within the microchannel. The simulations performed in this paper are based on the newest version of the two-phase Eulerian–Eulerian approach. The TiO2-based nanofluids with different base-fluids of water, ethylene glycol and water mixture (EG:W (60:40 by mass)) and transformer oil are considered for simulations. The nanoparticles are 21, 40 and 60 nanometers in diameter with the volume concentrations of 1.0, 1.6 and 2.3%. We found that nanofluids together with LVGs can remarkably enhance the heat exchange rates inside the microchannel. The heat transfer coefficient was shown to improve under increasing nanoparticle (TiO2) concentrations and Reynolds number, whereas the opposite trends were observed for friction factor. Results of this study indicate that using the mixture of EG:W (60:40 ethylene glycol and water) instead of pure water as a base-fluid leads to the increase of heat transfer in the microchannel. Finally, the maximum normalized efficiency of the LVG-enhanced microchannel, compared to the plain channel, is around 14%. Furthermore, using nanofluid can improve the normalized efficiency by 27%.
doi_str_mv 10.1016/j.applthermaleng.2016.02.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825459264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431116301533</els_id><sourcerecordid>1825459264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhbtQUEf_QxYu3HRM0qYPcSPiCwbd6DrcprfTDGlSk3RG_70dxo074cCFy3cOnJMkl4wuGWXF9WYJ42hij34Ag3a95PN3SfksepScskzUaZ4xdpKchbChlPGqzE-T7StY15lJt6QzbkfAtqRHiCR6sKFDT7QlQAatvFM9WIuG7HTsiXF2rePUaguGbJ2P-EXWaNFDdD7ckPedS8ceAhI7Dei1mrGgh8lA1M6eJ8cdmIAXv3eRfDw-vN8_p6u3p5f7u1WqsiKLqaB1JnjXAuYNQpULqipVtFTltFa85iBKpirMM5G1XJSd6MqGNVBjiaKhDWaL5OqQO3r3OWGIctBBoTFg0U1BsoqLXNS8yGf09oDOTUPw2MnR6wH8t2RU7ieWG_l3YrmfWFI-i872x4Md5zpbjV4GpdEqbLVHFWXr9P-CfgAYkZNB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825459264</pqid></control><display><type>article</type><title>Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sabaghan, Amin ; Edalatpour, Mojtaba ; Moghadam, Mohammad Charjouei ; Roohi, Ehsan ; Niazmand, Hamid</creator><creatorcontrib>Sabaghan, Amin ; Edalatpour, Mojtaba ; Moghadam, Mohammad Charjouei ; Roohi, Ehsan ; Niazmand, Hamid</creatorcontrib><description>•Two-phase model for the simulation of nanofluid flow in microchannels with LVG is utilized.•Local heat transfer coefficient along microchannel with LVG is presented.•Adding LVG to microchannel with nanofluid flow boosts heat transfer.•Efficiency of using nanoparticle and/or LVG in microchannel is discussed. Here we report a comprehensive numerical procedure based on the two-phase approach to simulate a rectangular microchannel consisting of six longitudinal vortex generators (LVGs). Nanofluids are used to remove heat generated within the microchannel. The simulations performed in this paper are based on the newest version of the two-phase Eulerian–Eulerian approach. The TiO2-based nanofluids with different base-fluids of water, ethylene glycol and water mixture (EG:W (60:40 by mass)) and transformer oil are considered for simulations. The nanoparticles are 21, 40 and 60 nanometers in diameter with the volume concentrations of 1.0, 1.6 and 2.3%. We found that nanofluids together with LVGs can remarkably enhance the heat exchange rates inside the microchannel. The heat transfer coefficient was shown to improve under increasing nanoparticle (TiO2) concentrations and Reynolds number, whereas the opposite trends were observed for friction factor. Results of this study indicate that using the mixture of EG:W (60:40 ethylene glycol and water) instead of pure water as a base-fluid leads to the increase of heat transfer in the microchannel. Finally, the maximum normalized efficiency of the LVG-enhanced microchannel, compared to the plain channel, is around 14%. Furthermore, using nanofluid can improve the normalized efficiency by 27%.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2016.02.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Ethylene glycol ; Heat transfer ; Longitudinal vortex generators ; Microchannel ; Microchannels ; Nanofluid ; Nanoparticles ; Nanostructure ; Titanium dioxide ; Two-phase simulation ; Vortex generators</subject><ispartof>Applied thermal engineering, 2016-05, Vol.100, p.179-189</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3</citedby><cites>FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3</cites><orcidid>0000-0001-5739-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sabaghan, Amin</creatorcontrib><creatorcontrib>Edalatpour, Mojtaba</creatorcontrib><creatorcontrib>Moghadam, Mohammad Charjouei</creatorcontrib><creatorcontrib>Roohi, Ehsan</creatorcontrib><creatorcontrib>Niazmand, Hamid</creatorcontrib><title>Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation</title><title>Applied thermal engineering</title><description>•Two-phase model for the simulation of nanofluid flow in microchannels with LVG is utilized.•Local heat transfer coefficient along microchannel with LVG is presented.•Adding LVG to microchannel with nanofluid flow boosts heat transfer.•Efficiency of using nanoparticle and/or LVG in microchannel is discussed. Here we report a comprehensive numerical procedure based on the two-phase approach to simulate a rectangular microchannel consisting of six longitudinal vortex generators (LVGs). Nanofluids are used to remove heat generated within the microchannel. The simulations performed in this paper are based on the newest version of the two-phase Eulerian–Eulerian approach. The TiO2-based nanofluids with different base-fluids of water, ethylene glycol and water mixture (EG:W (60:40 by mass)) and transformer oil are considered for simulations. The nanoparticles are 21, 40 and 60 nanometers in diameter with the volume concentrations of 1.0, 1.6 and 2.3%. We found that nanofluids together with LVGs can remarkably enhance the heat exchange rates inside the microchannel. The heat transfer coefficient was shown to improve under increasing nanoparticle (TiO2) concentrations and Reynolds number, whereas the opposite trends were observed for friction factor. Results of this study indicate that using the mixture of EG:W (60:40 ethylene glycol and water) instead of pure water as a base-fluid leads to the increase of heat transfer in the microchannel. Finally, the maximum normalized efficiency of the LVG-enhanced microchannel, compared to the plain channel, is around 14%. Furthermore, using nanofluid can improve the normalized efficiency by 27%.</description><subject>Computer simulation</subject><subject>Ethylene glycol</subject><subject>Heat transfer</subject><subject>Longitudinal vortex generators</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Nanofluid</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Titanium dioxide</subject><subject>Two-phase simulation</subject><subject>Vortex generators</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhbtQUEf_QxYu3HRM0qYPcSPiCwbd6DrcprfTDGlSk3RG_70dxo074cCFy3cOnJMkl4wuGWXF9WYJ42hij34Ag3a95PN3SfksepScskzUaZ4xdpKchbChlPGqzE-T7StY15lJt6QzbkfAtqRHiCR6sKFDT7QlQAatvFM9WIuG7HTsiXF2rePUaguGbJ2P-EXWaNFDdD7ckPedS8ceAhI7Dei1mrGgh8lA1M6eJ8cdmIAXv3eRfDw-vN8_p6u3p5f7u1WqsiKLqaB1JnjXAuYNQpULqipVtFTltFa85iBKpirMM5G1XJSd6MqGNVBjiaKhDWaL5OqQO3r3OWGIctBBoTFg0U1BsoqLXNS8yGf09oDOTUPw2MnR6wH8t2RU7ieWG_l3YrmfWFI-i872x4Md5zpbjV4GpdEqbLVHFWXr9P-CfgAYkZNB</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>Sabaghan, Amin</creator><creator>Edalatpour, Mojtaba</creator><creator>Moghadam, Mohammad Charjouei</creator><creator>Roohi, Ehsan</creator><creator>Niazmand, Hamid</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5739-3210</orcidid></search><sort><creationdate>20160505</creationdate><title>Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation</title><author>Sabaghan, Amin ; Edalatpour, Mojtaba ; Moghadam, Mohammad Charjouei ; Roohi, Ehsan ; Niazmand, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Ethylene glycol</topic><topic>Heat transfer</topic><topic>Longitudinal vortex generators</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Nanofluid</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Titanium dioxide</topic><topic>Two-phase simulation</topic><topic>Vortex generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabaghan, Amin</creatorcontrib><creatorcontrib>Edalatpour, Mojtaba</creatorcontrib><creatorcontrib>Moghadam, Mohammad Charjouei</creatorcontrib><creatorcontrib>Roohi, Ehsan</creatorcontrib><creatorcontrib>Niazmand, Hamid</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabaghan, Amin</au><au>Edalatpour, Mojtaba</au><au>Moghadam, Mohammad Charjouei</au><au>Roohi, Ehsan</au><au>Niazmand, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation</atitle><jtitle>Applied thermal engineering</jtitle><date>2016-05-05</date><risdate>2016</risdate><volume>100</volume><spage>179</spage><epage>189</epage><pages>179-189</pages><issn>1359-4311</issn><abstract>•Two-phase model for the simulation of nanofluid flow in microchannels with LVG is utilized.•Local heat transfer coefficient along microchannel with LVG is presented.•Adding LVG to microchannel with nanofluid flow boosts heat transfer.•Efficiency of using nanoparticle and/or LVG in microchannel is discussed. Here we report a comprehensive numerical procedure based on the two-phase approach to simulate a rectangular microchannel consisting of six longitudinal vortex generators (LVGs). Nanofluids are used to remove heat generated within the microchannel. The simulations performed in this paper are based on the newest version of the two-phase Eulerian–Eulerian approach. The TiO2-based nanofluids with different base-fluids of water, ethylene glycol and water mixture (EG:W (60:40 by mass)) and transformer oil are considered for simulations. The nanoparticles are 21, 40 and 60 nanometers in diameter with the volume concentrations of 1.0, 1.6 and 2.3%. We found that nanofluids together with LVGs can remarkably enhance the heat exchange rates inside the microchannel. The heat transfer coefficient was shown to improve under increasing nanoparticle (TiO2) concentrations and Reynolds number, whereas the opposite trends were observed for friction factor. Results of this study indicate that using the mixture of EG:W (60:40 ethylene glycol and water) instead of pure water as a base-fluid leads to the increase of heat transfer in the microchannel. Finally, the maximum normalized efficiency of the LVG-enhanced microchannel, compared to the plain channel, is around 14%. Furthermore, using nanofluid can improve the normalized efficiency by 27%.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2016.02.020</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5739-3210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2016-05, Vol.100, p.179-189
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1825459264
source ScienceDirect Freedom Collection 2022-2024
subjects Computer simulation
Ethylene glycol
Heat transfer
Longitudinal vortex generators
Microchannel
Microchannels
Nanofluid
Nanoparticles
Nanostructure
Titanium dioxide
Two-phase simulation
Vortex generators
title Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofluid%20flow%20and%20heat%20transfer%20in%20a%20microchannel%20with%20longitudinal%20vortex%20generators:%20Two-phase%20numerical%20simulation&rft.jtitle=Applied%20thermal%20engineering&rft.au=Sabaghan,%20Amin&rft.date=2016-05-05&rft.volume=100&rft.spage=179&rft.epage=189&rft.pages=179-189&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2016.02.020&rft_dat=%3Cproquest_cross%3E1825459264%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-509352fdae4bea8450c8c6d0c409c292a571c8e4353d257f5f7b1ba9e7e5b0be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825459264&rft_id=info:pmid/&rfr_iscdi=true