Loading…
Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings
Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with...
Saved in:
Published in: | Light, science & applications science & applications, 2015-03, Vol.4 (3), p.e257-e257 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013 |
container_end_page | e257 |
container_issue | 3 |
container_start_page | e257 |
container_title | Light, science & applications |
container_volume | 4 |
creator | Lei, Ting Zhang, Meng Li, Yuru Jia, Ping Liu, Gordon Ning Xu, Xiaogeng Li, Zhaohui Min, Changjun Lin, Jiao Yu, Changyuan Niu, Hanben Yuan, Xiaocong |
description | Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s
−1
capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s
−1
level.
Optical communications: massive parallel detection of optical angular momentum
Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s
−1
by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s
−1
level. |
doi_str_mv | 10.1038/lsa.2015.30 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825469689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4075955611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AiCg7dyX8g4EXQzqRJm-Qo8ydMvOg5vLbJzEjTmbTD_fdmzMMQ3-U9kg-PxzfLLgieEUzFrYswKzApZxQfZZMCM57zkorjg_k0m8a4wqkkI1jwSQavEKPdaGR9aze2HcGhPtR2SB38cnQQUNd32g9jh5pP8F67iEyfXkc32LXT39YvkfZQO92ieovuoesSQ8sAQ_qK59mJARf19LefZR-PD-_z53zx9vQyv1vkDa3EkFNOyspwIWsm2wKXBccgC6MJb3FpiCSGMAzUkIIBpRxw1daCUSlBGsYwoWfZ1X7vOvRfo46D6mxstHPgdT9GRURRskpWQiZ6-Yeu-jH4dJ0iXFKGeSHKpK73qgl9jEEbtQ62g7BVBKtd4iolrnaJK4qTvtnrmJRf6nCw8x_-A36PgdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793407285</pqid></control><display><type>article</type><title>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lei, Ting ; Zhang, Meng ; Li, Yuru ; Jia, Ping ; Liu, Gordon Ning ; Xu, Xiaogeng ; Li, Zhaohui ; Min, Changjun ; Lin, Jiao ; Yu, Changyuan ; Niu, Hanben ; Yuan, Xiaocong</creator><creatorcontrib>Lei, Ting ; Zhang, Meng ; Li, Yuru ; Jia, Ping ; Liu, Gordon Ning ; Xu, Xiaogeng ; Li, Zhaohui ; Min, Changjun ; Lin, Jiao ; Yu, Changyuan ; Niu, Hanben ; Yuan, Xiaocong</creatorcontrib><description>Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s
−1
capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s
−1
level.
Optical communications: massive parallel detection of optical angular momentum
Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s
−1
by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s
−1
level.</description><identifier>ISSN: 2047-7538</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/lsa.2015.30</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; Angular momentum ; Applied and Technical Physics ; Atomic ; Channels ; Classical and Continuum Physics ; Data transmission ; Diffraction gratings ; Gratings (spectra) ; Lasers ; Molecular ; Multiplexing ; Optical and Plasma Physics ; Optical communication ; Optical Devices ; Optics ; Orbitals ; original-article ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Light, science & applications, 2015-03, Vol.4 (3), p.e257-e257</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</citedby><cites>FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1793407285/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1793407285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Li, Yuru</creatorcontrib><creatorcontrib>Jia, Ping</creatorcontrib><creatorcontrib>Liu, Gordon Ning</creatorcontrib><creatorcontrib>Xu, Xiaogeng</creatorcontrib><creatorcontrib>Li, Zhaohui</creatorcontrib><creatorcontrib>Min, Changjun</creatorcontrib><creatorcontrib>Lin, Jiao</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Yuan, Xiaocong</creatorcontrib><title>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</title><title>Light, science & applications</title><addtitle>Light Sci Appl</addtitle><description>Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s
−1
capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s
−1
level.
Optical communications: massive parallel detection of optical angular momentum
Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s
−1
by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s
−1
level.</description><subject>639/624/1075/187</subject><subject>Angular momentum</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Data transmission</subject><subject>Diffraction gratings</subject><subject>Gratings (spectra)</subject><subject>Lasers</subject><subject>Molecular</subject><subject>Multiplexing</subject><subject>Optical and Plasma Physics</subject><subject>Optical communication</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Orbitals</subject><subject>original-article</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>2047-7538</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpt0M9LwzAUB_AiCg7dyX8g4EXQzqRJm-Qo8ydMvOg5vLbJzEjTmbTD_fdmzMMQ3-U9kg-PxzfLLgieEUzFrYswKzApZxQfZZMCM57zkorjg_k0m8a4wqkkI1jwSQavEKPdaGR9aze2HcGhPtR2SB38cnQQUNd32g9jh5pP8F67iEyfXkc32LXT39YvkfZQO92ieovuoesSQ8sAQ_qK59mJARf19LefZR-PD-_z53zx9vQyv1vkDa3EkFNOyspwIWsm2wKXBccgC6MJb3FpiCSGMAzUkIIBpRxw1daCUSlBGsYwoWfZ1X7vOvRfo46D6mxstHPgdT9GRURRskpWQiZ6-Yeu-jH4dJ0iXFKGeSHKpK73qgl9jEEbtQ62g7BVBKtd4iolrnaJK4qTvtnrmJRf6nCw8x_-A36PgdU</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Lei, Ting</creator><creator>Zhang, Meng</creator><creator>Li, Yuru</creator><creator>Jia, Ping</creator><creator>Liu, Gordon Ning</creator><creator>Xu, Xiaogeng</creator><creator>Li, Zhaohui</creator><creator>Min, Changjun</creator><creator>Lin, Jiao</creator><creator>Yu, Changyuan</creator><creator>Niu, Hanben</creator><creator>Yuan, Xiaocong</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150301</creationdate><title>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</title><author>Lei, Ting ; Zhang, Meng ; Li, Yuru ; Jia, Ping ; Liu, Gordon Ning ; Xu, Xiaogeng ; Li, Zhaohui ; Min, Changjun ; Lin, Jiao ; Yu, Changyuan ; Niu, Hanben ; Yuan, Xiaocong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/624/1075/187</topic><topic>Angular momentum</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Data transmission</topic><topic>Diffraction gratings</topic><topic>Gratings (spectra)</topic><topic>Lasers</topic><topic>Molecular</topic><topic>Multiplexing</topic><topic>Optical and Plasma Physics</topic><topic>Optical communication</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Orbitals</topic><topic>original-article</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Li, Yuru</creatorcontrib><creatorcontrib>Jia, Ping</creatorcontrib><creatorcontrib>Liu, Gordon Ning</creatorcontrib><creatorcontrib>Xu, Xiaogeng</creatorcontrib><creatorcontrib>Li, Zhaohui</creatorcontrib><creatorcontrib>Min, Changjun</creatorcontrib><creatorcontrib>Lin, Jiao</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Yuan, Xiaocong</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Light, science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Ting</au><au>Zhang, Meng</au><au>Li, Yuru</au><au>Jia, Ping</au><au>Liu, Gordon Ning</au><au>Xu, Xiaogeng</au><au>Li, Zhaohui</au><au>Min, Changjun</au><au>Lin, Jiao</au><au>Yu, Changyuan</au><au>Niu, Hanben</au><au>Yuan, Xiaocong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</atitle><jtitle>Light, science & applications</jtitle><stitle>Light Sci Appl</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>4</volume><issue>3</issue><spage>e257</spage><epage>e257</epage><pages>e257-e257</pages><issn>2047-7538</issn><eissn>2047-7538</eissn><abstract>Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s
−1
capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s
−1
level.
Optical communications: massive parallel detection of optical angular momentum
Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s
−1
by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s
−1
level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/lsa.2015.30</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-7538 |
ispartof | Light, science & applications, 2015-03, Vol.4 (3), p.e257-e257 |
issn | 2047-7538 2047-7538 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825469689 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1075/187 Angular momentum Applied and Technical Physics Atomic Channels Classical and Continuum Physics Data transmission Diffraction gratings Gratings (spectra) Lasers Molecular Multiplexing Optical and Plasma Physics Optical communication Optical Devices Optics Orbitals original-article Photonics Physics Physics and Astronomy |
title | Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20individual%20orbital%20angular%20momentum%20channels%20for%20multiplexing%20enabled%20by%20Dammann%20gratings&rft.jtitle=Light,%20science%20&%20applications&rft.au=Lei,%20Ting&rft.date=2015-03-01&rft.volume=4&rft.issue=3&rft.spage=e257&rft.epage=e257&rft.pages=e257-e257&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/lsa.2015.30&rft_dat=%3Cproquest_cross%3E4075955611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793407285&rft_id=info:pmid/&rfr_iscdi=true |