Loading…

Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings

Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with...

Full description

Saved in:
Bibliographic Details
Published in:Light, science & applications science & applications, 2015-03, Vol.4 (3), p.e257-e257
Main Authors: Lei, Ting, Zhang, Meng, Li, Yuru, Jia, Ping, Liu, Gordon Ning, Xu, Xiaogeng, Li, Zhaohui, Min, Changjun, Lin, Jiao, Yu, Changyuan, Niu, Hanben, Yuan, Xiaocong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013
cites cdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013
container_end_page e257
container_issue 3
container_start_page e257
container_title Light, science & applications
container_volume 4
creator Lei, Ting
Zhang, Meng
Li, Yuru
Jia, Ping
Liu, Gordon Ning
Xu, Xiaogeng
Li, Zhaohui
Min, Changjun
Lin, Jiao
Yu, Changyuan
Niu, Hanben
Yuan, Xiaocong
description Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s −1 capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s −1 level. Optical communications: massive parallel detection of optical angular momentum Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s −1 by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s −1 level.
doi_str_mv 10.1038/lsa.2015.30
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825469689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4075955611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AiCg7dyX8g4EXQzqRJm-Qo8ydMvOg5vLbJzEjTmbTD_fdmzMMQ3-U9kg-PxzfLLgieEUzFrYswKzApZxQfZZMCM57zkorjg_k0m8a4wqkkI1jwSQavEKPdaGR9aze2HcGhPtR2SB38cnQQUNd32g9jh5pP8F67iEyfXkc32LXT39YvkfZQO92ieovuoesSQ8sAQ_qK59mJARf19LefZR-PD-_z53zx9vQyv1vkDa3EkFNOyspwIWsm2wKXBccgC6MJb3FpiCSGMAzUkIIBpRxw1daCUSlBGsYwoWfZ1X7vOvRfo46D6mxstHPgdT9GRURRskpWQiZ6-Yeu-jH4dJ0iXFKGeSHKpK73qgl9jEEbtQ62g7BVBKtd4iolrnaJK4qTvtnrmJRf6nCw8x_-A36PgdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793407285</pqid></control><display><type>article</type><title>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lei, Ting ; Zhang, Meng ; Li, Yuru ; Jia, Ping ; Liu, Gordon Ning ; Xu, Xiaogeng ; Li, Zhaohui ; Min, Changjun ; Lin, Jiao ; Yu, Changyuan ; Niu, Hanben ; Yuan, Xiaocong</creator><creatorcontrib>Lei, Ting ; Zhang, Meng ; Li, Yuru ; Jia, Ping ; Liu, Gordon Ning ; Xu, Xiaogeng ; Li, Zhaohui ; Min, Changjun ; Lin, Jiao ; Yu, Changyuan ; Niu, Hanben ; Yuan, Xiaocong</creatorcontrib><description>Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s −1 capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s −1 level. Optical communications: massive parallel detection of optical angular momentum Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s −1 by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s −1 level.</description><identifier>ISSN: 2047-7538</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/lsa.2015.30</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; Angular momentum ; Applied and Technical Physics ; Atomic ; Channels ; Classical and Continuum Physics ; Data transmission ; Diffraction gratings ; Gratings (spectra) ; Lasers ; Molecular ; Multiplexing ; Optical and Plasma Physics ; Optical communication ; Optical Devices ; Optics ; Orbitals ; original-article ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Light, science &amp; applications, 2015-03, Vol.4 (3), p.e257-e257</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</citedby><cites>FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1793407285/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1793407285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Li, Yuru</creatorcontrib><creatorcontrib>Jia, Ping</creatorcontrib><creatorcontrib>Liu, Gordon Ning</creatorcontrib><creatorcontrib>Xu, Xiaogeng</creatorcontrib><creatorcontrib>Li, Zhaohui</creatorcontrib><creatorcontrib>Min, Changjun</creatorcontrib><creatorcontrib>Lin, Jiao</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Yuan, Xiaocong</creatorcontrib><title>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><description>Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s −1 capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s −1 level. Optical communications: massive parallel detection of optical angular momentum Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s −1 by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s −1 level.</description><subject>639/624/1075/187</subject><subject>Angular momentum</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Data transmission</subject><subject>Diffraction gratings</subject><subject>Gratings (spectra)</subject><subject>Lasers</subject><subject>Molecular</subject><subject>Multiplexing</subject><subject>Optical and Plasma Physics</subject><subject>Optical communication</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Orbitals</subject><subject>original-article</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>2047-7538</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpt0M9LwzAUB_AiCg7dyX8g4EXQzqRJm-Qo8ydMvOg5vLbJzEjTmbTD_fdmzMMQ3-U9kg-PxzfLLgieEUzFrYswKzApZxQfZZMCM57zkorjg_k0m8a4wqkkI1jwSQavEKPdaGR9aze2HcGhPtR2SB38cnQQUNd32g9jh5pP8F67iEyfXkc32LXT39YvkfZQO92ieovuoesSQ8sAQ_qK59mJARf19LefZR-PD-_z53zx9vQyv1vkDa3EkFNOyspwIWsm2wKXBccgC6MJb3FpiCSGMAzUkIIBpRxw1daCUSlBGsYwoWfZ1X7vOvRfo46D6mxstHPgdT9GRURRskpWQiZ6-Yeu-jH4dJ0iXFKGeSHKpK73qgl9jEEbtQ62g7BVBKtd4iolrnaJK4qTvtnrmJRf6nCw8x_-A36PgdU</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Lei, Ting</creator><creator>Zhang, Meng</creator><creator>Li, Yuru</creator><creator>Jia, Ping</creator><creator>Liu, Gordon Ning</creator><creator>Xu, Xiaogeng</creator><creator>Li, Zhaohui</creator><creator>Min, Changjun</creator><creator>Lin, Jiao</creator><creator>Yu, Changyuan</creator><creator>Niu, Hanben</creator><creator>Yuan, Xiaocong</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150301</creationdate><title>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</title><author>Lei, Ting ; Zhang, Meng ; Li, Yuru ; Jia, Ping ; Liu, Gordon Ning ; Xu, Xiaogeng ; Li, Zhaohui ; Min, Changjun ; Lin, Jiao ; Yu, Changyuan ; Niu, Hanben ; Yuan, Xiaocong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/624/1075/187</topic><topic>Angular momentum</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Data transmission</topic><topic>Diffraction gratings</topic><topic>Gratings (spectra)</topic><topic>Lasers</topic><topic>Molecular</topic><topic>Multiplexing</topic><topic>Optical and Plasma Physics</topic><topic>Optical communication</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Orbitals</topic><topic>original-article</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Li, Yuru</creatorcontrib><creatorcontrib>Jia, Ping</creatorcontrib><creatorcontrib>Liu, Gordon Ning</creatorcontrib><creatorcontrib>Xu, Xiaogeng</creatorcontrib><creatorcontrib>Li, Zhaohui</creatorcontrib><creatorcontrib>Min, Changjun</creatorcontrib><creatorcontrib>Lin, Jiao</creatorcontrib><creatorcontrib>Yu, Changyuan</creatorcontrib><creatorcontrib>Niu, Hanben</creatorcontrib><creatorcontrib>Yuan, Xiaocong</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Ting</au><au>Zhang, Meng</au><au>Li, Yuru</au><au>Jia, Ping</au><au>Liu, Gordon Ning</au><au>Xu, Xiaogeng</au><au>Li, Zhaohui</au><au>Min, Changjun</au><au>Lin, Jiao</au><au>Yu, Changyuan</au><au>Niu, Hanben</au><au>Yuan, Xiaocong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>4</volume><issue>3</issue><spage>e257</spage><epage>e257</epage><pages>e257-e257</pages><issn>2047-7538</issn><eissn>2047-7538</eissn><abstract>Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s −1 capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s −1 level. Optical communications: massive parallel detection of optical angular momentum Dammann gratings are used to realize multiplexing based on the generation, transmission and detection of optical angular momentum (OAM). The OAM of optical vortex beams offers a new degree of freedom for multiplexing and hence the promise of higher data communication rates, but massive parallel detection of OAM states has proved challenging. Now, researchers in China, Australia and Singapore have used Dammann optical vortex gratings (DOVGs) to realize multiplexing of massive OAM channels with individual modulation and simultaneous detection capabilities. They achieved a data capacity of 80 Tbit s −1 by multiplexing 1600 channels using ten OAM states, 80 wavelengths and two polarizations. This DOVG-enabled OAM multiplexing technology removes the bottleneck of massive parallel detection of OAM states and has the potential to increase optical communication capacities to the Pbit s −1 level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/lsa.2015.30</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2015-03, Vol.4 (3), p.e257-e257
issn 2047-7538
2047-7538
language eng
recordid cdi_proquest_miscellaneous_1825469689
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1075/187
Angular momentum
Applied and Technical Physics
Atomic
Channels
Classical and Continuum Physics
Data transmission
Diffraction gratings
Gratings (spectra)
Lasers
Molecular
Multiplexing
Optical and Plasma Physics
Optical communication
Optical Devices
Optics
Orbitals
original-article
Photonics
Physics
Physics and Astronomy
title Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20individual%20orbital%20angular%20momentum%20channels%20for%20multiplexing%20enabled%20by%20Dammann%20gratings&rft.jtitle=Light,%20science%20&%20applications&rft.au=Lei,%20Ting&rft.date=2015-03-01&rft.volume=4&rft.issue=3&rft.spage=e257&rft.epage=e257&rft.pages=e257-e257&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/lsa.2015.30&rft_dat=%3Cproquest_cross%3E4075955611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-37156f789b49d205270a92fe17d05f191f140a3f124a337a06db84399a9f44013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793407285&rft_id=info:pmid/&rfr_iscdi=true