Loading…

Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce

Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work...

Full description

Saved in:
Bibliographic Details
Published in:Simulation modelling practice and theory 2016-05, Vol.64, p.18-29
Main Authors: El-Alfy, El-Sayed M., Alshammari, Mashaan A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83
cites cdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83
container_end_page 29
container_issue
container_start_page 18
container_title Simulation modelling practice and theory
container_volume 64
creator El-Alfy, El-Sayed M.
Alshammari, Mashaan A.
description Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.
doi_str_mv 10.1016/j.simpat.2016.01.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825472872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X16000174</els_id><sourcerecordid>1825472872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</originalsourceid><addsrcrecordid>eNp9UE1LxDAULKLg-vEPPOTopWuSbZP0IsjiFyiCKHgLafp2zZJtal6qePSfm7KehQfvzTAz8KYozhidM8rExWaObjuYNOcZzSnLQ_eKGVNSlawSfD_ftWhK1tC3w-IIcUMpU0rIWfHzEr5M7JCgNd60HkgM4_qdICTSGoSOmJSia8cEBMd2ohE82ORCT1YhEtenOOKEOkh_fMb9mgwmGu_BkzX0kJwlxq9DdOl9m03k0QzP0I0WToqDlfEIp3_7uHi9uX5Z3pUPT7f3y6uH0i4WTSoFh0Z2vJZKtnUlO7BcNtYqYHXNZS0EYwbYoq2YbFpoVkrxhlbCippKEFYtjovzXe4Qw8cImPTWoQXvTQ9hRM0Uz7lcSZ6l1U5qY0CMsNJDdFsTvzWjempcb_SucT01rinLQ7PtcmeD_Mang6jROugtdC7mZnQX3P8BvwwLjlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825472872</pqid></control><display><type>article</type><title>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</title><source>Elsevier</source><creator>El-Alfy, El-Sayed M. ; Alshammari, Mashaan A.</creator><creatorcontrib>El-Alfy, El-Sayed M. ; Alshammari, Mashaan A.</creatorcontrib><description>Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2016.01.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Attribute subset selection ; Big data ; Computer information security ; Genetic algorithms ; Hybrid methods ; Intrusion ; MapReduce ; Minimum reduct ; Modelling ; Parallel genetic algorithms ; Pattern recognition ; Preprocessing ; Rough sets ; Tables (data)</subject><ispartof>Simulation modelling practice and theory, 2016-05, Vol.64, p.18-29</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</citedby><cites>FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>El-Alfy, El-Sayed M.</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><title>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</title><title>Simulation modelling practice and theory</title><description>Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.</description><subject>Approximation</subject><subject>Attribute subset selection</subject><subject>Big data</subject><subject>Computer information security</subject><subject>Genetic algorithms</subject><subject>Hybrid methods</subject><subject>Intrusion</subject><subject>MapReduce</subject><subject>Minimum reduct</subject><subject>Modelling</subject><subject>Parallel genetic algorithms</subject><subject>Pattern recognition</subject><subject>Preprocessing</subject><subject>Rough sets</subject><subject>Tables (data)</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAULKLg-vEPPOTopWuSbZP0IsjiFyiCKHgLafp2zZJtal6qePSfm7KehQfvzTAz8KYozhidM8rExWaObjuYNOcZzSnLQ_eKGVNSlawSfD_ftWhK1tC3w-IIcUMpU0rIWfHzEr5M7JCgNd60HkgM4_qdICTSGoSOmJSia8cEBMd2ohE82ORCT1YhEtenOOKEOkh_fMb9mgwmGu_BkzX0kJwlxq9DdOl9m03k0QzP0I0WToqDlfEIp3_7uHi9uX5Z3pUPT7f3y6uH0i4WTSoFh0Z2vJZKtnUlO7BcNtYqYHXNZS0EYwbYoq2YbFpoVkrxhlbCippKEFYtjovzXe4Qw8cImPTWoQXvTQ9hRM0Uz7lcSZ6l1U5qY0CMsNJDdFsTvzWjempcb_SucT01rinLQ7PtcmeD_Mang6jROugtdC7mZnQX3P8BvwwLjlM</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>El-Alfy, El-Sayed M.</creator><creator>Alshammari, Mashaan A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</title><author>El-Alfy, El-Sayed M. ; Alshammari, Mashaan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Attribute subset selection</topic><topic>Big data</topic><topic>Computer information security</topic><topic>Genetic algorithms</topic><topic>Hybrid methods</topic><topic>Intrusion</topic><topic>MapReduce</topic><topic>Minimum reduct</topic><topic>Modelling</topic><topic>Parallel genetic algorithms</topic><topic>Pattern recognition</topic><topic>Preprocessing</topic><topic>Rough sets</topic><topic>Tables (data)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Alfy, El-Sayed M.</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Alfy, El-Sayed M.</au><au>Alshammari, Mashaan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</atitle><jtitle>Simulation modelling practice and theory</jtitle><date>2016-05</date><risdate>2016</risdate><volume>64</volume><spage>18</spage><epage>29</epage><pages>18-29</pages><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpat.2016.01.010</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-190X
ispartof Simulation modelling practice and theory, 2016-05, Vol.64, p.18-29
issn 1569-190X
1878-1462
language eng
recordid cdi_proquest_miscellaneous_1825472872
source Elsevier
subjects Approximation
Attribute subset selection
Big data
Computer information security
Genetic algorithms
Hybrid methods
Intrusion
MapReduce
Minimum reduct
Modelling
Parallel genetic algorithms
Pattern recognition
Preprocessing
Rough sets
Tables (data)
title Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20scalable%20rough%20set%20based%20attribute%20subset%20selection%20for%20intrusion%20detection%20using%20parallel%20genetic%20algorithm%20in%20MapReduce&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=El-Alfy,%20El-Sayed%20M.&rft.date=2016-05&rft.volume=64&rft.spage=18&rft.epage=29&rft.pages=18-29&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2016.01.010&rft_dat=%3Cproquest_cross%3E1825472872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825472872&rft_id=info:pmid/&rfr_iscdi=true