Loading…
Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce
Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work...
Saved in:
Published in: | Simulation modelling practice and theory 2016-05, Vol.64, p.18-29 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83 |
container_end_page | 29 |
container_issue | |
container_start_page | 18 |
container_title | Simulation modelling practice and theory |
container_volume | 64 |
creator | El-Alfy, El-Sayed M. Alshammari, Mashaan A. |
description | Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems. |
doi_str_mv | 10.1016/j.simpat.2016.01.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825472872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X16000174</els_id><sourcerecordid>1825472872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</originalsourceid><addsrcrecordid>eNp9UE1LxDAULKLg-vEPPOTopWuSbZP0IsjiFyiCKHgLafp2zZJtal6qePSfm7KehQfvzTAz8KYozhidM8rExWaObjuYNOcZzSnLQ_eKGVNSlawSfD_ftWhK1tC3w-IIcUMpU0rIWfHzEr5M7JCgNd60HkgM4_qdICTSGoSOmJSia8cEBMd2ohE82ORCT1YhEtenOOKEOkh_fMb9mgwmGu_BkzX0kJwlxq9DdOl9m03k0QzP0I0WToqDlfEIp3_7uHi9uX5Z3pUPT7f3y6uH0i4WTSoFh0Z2vJZKtnUlO7BcNtYqYHXNZS0EYwbYoq2YbFpoVkrxhlbCippKEFYtjovzXe4Qw8cImPTWoQXvTQ9hRM0Uz7lcSZ6l1U5qY0CMsNJDdFsTvzWjempcb_SucT01rinLQ7PtcmeD_Mang6jROugtdC7mZnQX3P8BvwwLjlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825472872</pqid></control><display><type>article</type><title>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</title><source>Elsevier</source><creator>El-Alfy, El-Sayed M. ; Alshammari, Mashaan A.</creator><creatorcontrib>El-Alfy, El-Sayed M. ; Alshammari, Mashaan A.</creatorcontrib><description>Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2016.01.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Attribute subset selection ; Big data ; Computer information security ; Genetic algorithms ; Hybrid methods ; Intrusion ; MapReduce ; Minimum reduct ; Modelling ; Parallel genetic algorithms ; Pattern recognition ; Preprocessing ; Rough sets ; Tables (data)</subject><ispartof>Simulation modelling practice and theory, 2016-05, Vol.64, p.18-29</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</citedby><cites>FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>El-Alfy, El-Sayed M.</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><title>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</title><title>Simulation modelling practice and theory</title><description>Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.</description><subject>Approximation</subject><subject>Attribute subset selection</subject><subject>Big data</subject><subject>Computer information security</subject><subject>Genetic algorithms</subject><subject>Hybrid methods</subject><subject>Intrusion</subject><subject>MapReduce</subject><subject>Minimum reduct</subject><subject>Modelling</subject><subject>Parallel genetic algorithms</subject><subject>Pattern recognition</subject><subject>Preprocessing</subject><subject>Rough sets</subject><subject>Tables (data)</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAULKLg-vEPPOTopWuSbZP0IsjiFyiCKHgLafp2zZJtal6qePSfm7KehQfvzTAz8KYozhidM8rExWaObjuYNOcZzSnLQ_eKGVNSlawSfD_ftWhK1tC3w-IIcUMpU0rIWfHzEr5M7JCgNd60HkgM4_qdICTSGoSOmJSia8cEBMd2ohE82ORCT1YhEtenOOKEOkh_fMb9mgwmGu_BkzX0kJwlxq9DdOl9m03k0QzP0I0WToqDlfEIp3_7uHi9uX5Z3pUPT7f3y6uH0i4WTSoFh0Z2vJZKtnUlO7BcNtYqYHXNZS0EYwbYoq2YbFpoVkrxhlbCippKEFYtjovzXe4Qw8cImPTWoQXvTQ9hRM0Uz7lcSZ6l1U5qY0CMsNJDdFsTvzWjempcb_SucT01rinLQ7PtcmeD_Mang6jROugtdC7mZnQX3P8BvwwLjlM</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>El-Alfy, El-Sayed M.</creator><creator>Alshammari, Mashaan A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</title><author>El-Alfy, El-Sayed M. ; Alshammari, Mashaan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Attribute subset selection</topic><topic>Big data</topic><topic>Computer information security</topic><topic>Genetic algorithms</topic><topic>Hybrid methods</topic><topic>Intrusion</topic><topic>MapReduce</topic><topic>Minimum reduct</topic><topic>Modelling</topic><topic>Parallel genetic algorithms</topic><topic>Pattern recognition</topic><topic>Preprocessing</topic><topic>Rough sets</topic><topic>Tables (data)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Alfy, El-Sayed M.</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Alfy, El-Sayed M.</au><au>Alshammari, Mashaan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce</atitle><jtitle>Simulation modelling practice and theory</jtitle><date>2016-05</date><risdate>2016</risdate><volume>64</volume><spage>18</spage><epage>29</epage><pages>18-29</pages><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>Attribute subset selection based on rough sets is a crucial preprocessing step in data mining and pattern recognition to reduce the modeling complexity. To cope with the new era of big data, new approaches need to be explored to address this problem effectively. In this paper, we review recent work related to attribute subset selection in decision-theoretic rough set models. We also introduce a scalable implementation of a parallel genetic algorithm in Hadoop MapReduce to approximate the minimum reduct which has the same discernibility power as the original attribute set in the decision table. Then, we focus on intrusion detection in computer networks and apply the proposed approach on four datasets with varying characteristics. The results show that the proposed model can be a powerful tool to boost the performance of identifying attributes in the minimum reduct in large-scale decision systems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpat.2016.01.010</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-190X |
ispartof | Simulation modelling practice and theory, 2016-05, Vol.64, p.18-29 |
issn | 1569-190X 1878-1462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825472872 |
source | Elsevier |
subjects | Approximation Attribute subset selection Big data Computer information security Genetic algorithms Hybrid methods Intrusion MapReduce Minimum reduct Modelling Parallel genetic algorithms Pattern recognition Preprocessing Rough sets Tables (data) |
title | Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20scalable%20rough%20set%20based%20attribute%20subset%20selection%20for%20intrusion%20detection%20using%20parallel%20genetic%20algorithm%20in%20MapReduce&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=El-Alfy,%20El-Sayed%20M.&rft.date=2016-05&rft.volume=64&rft.spage=18&rft.epage=29&rft.pages=18-29&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2016.01.010&rft_dat=%3Cproquest_cross%3E1825472872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-62e97d25787b547dec279cc8e1552756611ae13b4179be9f8829046c6507e6c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825472872&rft_id=info:pmid/&rfr_iscdi=true |